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1 Simulations with imbalanced outcomes

We extend the simulations study in the main paper with an imbalanced
outcome (n+ = 12, n− = 48) with α0 = 0.025. We also introduce the
area under the precision recall curve (AUC-PR) as a performance metric
as it is better suited when the outcome is imbalanced. The results are
displayed in Table 1.

For J = 4 the performance of the different estimators in prediction
have dropped compared to the balanced case in the main paper. However,
the relative performance of the different estimators is similar to that of the
main paper. That is, EB still has the best performance among the other
estimators. Ridge and and the shrunken centroids estimators generally
perform worse than their empirical Bayes counterparts: EBComBat,
EBMerge and EBAvg. The MLEs ∆̂i and β̂i have the worst performances
amongst all estimators.

For J = 15 the performance of the different estimators in prediction
improves greatly compared to J = 4, EB is still top in performance,
EBComBat and the MLE β̂i have performances that are close to that of
EB. The MLE ∆̂i has the worst performance amongst all other estimators.

2 Simulations on correlations between predictors

In this simulation study, we assess the effect of correlation between
predictors on the prediction performance of the empirical Bayes estimator,
EB. We start by simulating data independently and move on to incorporate
a range of correlations – from weak to strong. The prediction performance
of the rule in (6) of the main paper with EB estimators is assessed over the
span of correlations. The goal is to examine how poorly the rule in (6) (of
the main paper) performs with increasing correlation between predictors.
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Table 1. For J = 4 and J = 15 studies, performance metrics, standard errors in parenthesis
and the cardinality of Sfinal. Estimators are ranked according to their misclassification error
rate estimate α̂CV(Sfinal). The performance of the true parameter values βi and ∆i, are shown
for benchmarking. The performance of the maximum likelihood estimators (MLE) of ∆i and
βi, ∆̂i and β̂i, respectively, are also presented. The imbalanced in the outcome is 20% vs
80%. Cross-validation estimates of the area under the precision recall curve (AUC-PRCV) and
the area under the receiver characteristic curve (AUC-ROCCV) are shown.

J = 4

α̂CV ExpLossCV AUC-ROCCV AUC-PRCV Cardinality of Sfinal

true βi 0.015 (0.03) 0.583 (0.08) 0.999 (0.00) 0.913 (0.00) 41
true ∆i 0.083 (0.02) 0.594 (0.05) 0.965 (0.00) 0.826 (0.00) 14
EB 0.293 (0.08) 0.621 (0.11) 0.790 (0.09) 0.467 (0.01) 12
EBMerge 0.307 (0.07) 0.618 (0.10) 0.777 (0.07) 0.451 (0.09) 34
EBAvg 0.332 (0.09) 0.618 (0.05) 0.752 (0.07) 0.423 (0.08) 22
EBComBat 0.377 (0.06) 0.622 (0.43) 0.666 (0.08) 0.337 (0.12) 8
Ridge 0.378 (0.08) 0.625 (0.42) 0.672 (0.07) 0.362 (0.41) 8
Shrunken centroids 0.380 (0.05) 0.623 (0.18) 0.667 (0.09) 0.334 (0.22) 13
MLE ∆̂i 0.443 (0.10) 0.624 (0.38) 0.581 (0.21) 0.146 (0.40) 1
MLE β̂i 0.457 (0.12) 0.625 (0.23) 0.572 (0.11) 0.202 (0.20) 4

J = 15

α̂CV ExpLossCV AUC-ROCCV AUC-PRCV Cardinality of Sfinal

true βi 0.010 (0.03) 0.584 (0.08) 1.000 (0.00) 0.915 (0.02) 41
EB 0.037 (0.08) 0.585 (0.08) 0.992 (0.05) 0.896 (0.09) 26
EBComBat 0.042 (0.06) 0.586 (0.09) 0.995 (0.09) 0.899 (0.07) 53
MLE β̂i 0.045 (0.03) 0.589 (0.12) 0.992 (0.09) 0.888 (0.08) 32
true ∆i 0.068 (0.04) 0.588 (0.04) 0.985 (0.00) 0.872 (0.01) 14
EBMerge 0.080 (0.05) 0.591 (0.09) 0.980 (0.09) 0.865 (0.09) 50
EBAvg 0.083 (0.06) 0.594 (0.12) 0.980 (0.11) 0.856 (0.26) 14
Shrunken centroids 0.090 (0.03) 0.594 (0.11) 0.970 (0.14) 0.832(0.14) 26
Ridge 0.103 (0.07) 0.617 (0.11) 0.943 (0.16) 0.774 (0.13) 58
MLE ∆̂i 0.123 (0.08) 0.601 (0.32) 0.940 (0.28) 0.766 (0.18) 12

For such comparisons to make sense, it is important that the effect sizes of
the predictors remain the same throughout the range of correlations. This
way, only the effect of the correlation between predictors is investigated.

In the main text we gave two parametric forms of the misclassification
error rate α. An α without and with correlation correction, α̂ and α̂cor

respectively. As a secondary goal, we will compare the performance of
models selected with α̂ and α̂cor.

Finally, we know that α̂ reduces when more predictors are added to the
prediction rule and eventually leads to too optimistic conclusions about
model performance. With cross validation, a close to honest estimate of
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model performance is possible. In the main text, α̂CV was introduced as a
cross validation estimate of α̂ an we compare α̂cor and α̂CV.

2.1 Generating data

We replicate 1000 Monte Carlo runs and average the results over these
runs. In each Monte Carlo run, data for n = 60 subjects is generated within
each of the J studies, with n−j = 30 stable (Y = −1) and n+j = 30 reject
(Y = +1) subjects, j = 1, . . . , J . The number of studies is set to J = 4

and the number of genes to N = 10000. We denote the standard normal
distribution with Φ and generate the effect sizes as

∆i ∼ Φ−1
(

i

301

)
, i = 1 . . . , 300 and

∆i = 0, i = 301, . . . , N.

In this way, only the first 300 genes are predictive for the outcome. The
heterogeneity parameters are generated as

τ 2i ∼ F−1χ1

(
i

N + 1

)
+ 1, i = 1, . . . , N,

where F−1
χ2
1

(x) is the quantile function of a chi-squared distribution with
one degree of freedom. Note that τ 2i ≥ 1. We begin with simulating the
predictors independently and include correlations in the next step, i.e.,

δij ∼ N
(
∆i, σ

2
i

)
and σ2

i = 4(τ 2i − 1)

with
X ′ij|Yj ∼ N

(
µij + λijYjδij/2, λ

2
ij

)
,

we then let

U ′ij =
X ′ij − µij

λij
,
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so that
U ′ij | Yj,∆i ∼ N(Yj∆i/2, τ

2
i ).

Now we add the correlation as the parameter ρi, for the ith predictor
with ρi ∈ [0, 1), and generate the correlated predictors as

Xij =
√
ρiε+

√
1− ρiU ′ij,

so that Xij|Y ∼ N
(√

1− ρiY∆i/2, ρi + (1− ρi)τ 2i )
)
. (1)

Here, ε is a standard Gaussian random variable and we assume equal
variances and covariances in the two groups (Y = ±1). Equation (1)
ensures that the covariance between predictors Xi and X ′i is

√
ρiρi′ . This

follows from,

Cov (Xij, Xi′j) = E {XiXi′} − E {Xij}E {Xi′j}

= E
{
ε2
√
ρiρi′ + ρiε

√
1− ρiUij

}
+ E

{
ρi′ε
√

1− ρi′U ′i′j +
√

(1− ρi)(1− ρi′)UijU ′i′j
}

− E {Xij}E {Xi′j}

= E
{
ε2
√
ρiρi′

}
+ E

{√
(1− ρi)(1− ρi′)UijU ′i′j

}
− E

{√
(1− ρi)(1− ρi′)UijU ′i′j

}
=
√
ρiρi′ , since E

{
ε2
}

= 1.

Equation (1) also makes sure that the effect size of each predictor remains
the same after adding correlations between the predictors. To see this, note
that the standardized predictor Xij denoted as Uij takes the form

Uij =
Xij√
1− ρi

∼ N
(
Y

∆i

2
,

ρi
1− ρi

+ τ 2i

)
,
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with
Cov (Uij, Ui′j) =

√
ρiρi′

(1− ρi)(1− ρi′)
.

So that
∆i = E {Uij | Y = 1} − E {Uij | Y = −1} ,

and ∆i is interpreted as the effect size of the predictor Uij .

2.2 Assessments

We compute the empirical Bayes estimate of βi, EB, from the correlated
training dataset. EB is used in the rule (6) (of the main text) to make
predictions on a correlated test dataset (generated in same way as the
training), and its performance is assessed with α̂CV, ExpLossCV, BrierCV

and AUCCV. For benchmarking, we also assess the performance of the
true values of βi in prediction, when used in the prediction rule in (6) of
the main paper. This is done for each Monte Carlo run. All correlations
between predictors are set to ρ, ρ taking values 0.1, 0.3, 0.6 and 0.9. We
will use the two model selection procedures discussed in the main text: 1)
the model selection approach in Section 4.2 with α0 = 0.025, referred to
as Method 1 here. This model selection method uses α estimates without
correlation correction for model selection. 2) The model selection with
estimates of αcor as described in Section 6 of the main paper, this method
is referred to as Method 2. Here, the model selection is with respect α,
corrected for the correlations between predictors. Since we are comparing
two model selection criteria, we make a distinction between the metrics
used for assessing these model selection criteria. Using Method 1 for
model selection, we arrive at the optimal set of predictors Sfinal, and it
is denoted here as Sfinal1. We add the subscript 1, to all the metrics used for
assessing variable selection with Method 1 (α̂CV1, ExpLossCV1, BrierCV1

and AUCCV1). Using Method 2, α̂cor attains a minimum after a certain
number (ordered by their magnitude) of predictors have been added to the
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Table 2. Empirical Bayes (EB) and the true β performance in classification when used in rule
(6) (of the main paper), at different values of the correlation, ρ. Their performance is assessed
with α from cross validation (CV), α̂CV, CV exponential loss, ExpLossCV, CV Brier score,
BrierCV, and the area under the receiver characteristic curve, AUCCV, from CV. The subscripts
1 and 2 added to the model assessment metrics, refer to the method used for model selection
(Method 1 and Method 2). The cardinality of the optimal set of predictors using the two model
selection methods are also shown along side the estimate of α̂cor. Model performance drops
with increasing ρ.

Estimators α̂CV1 α̂CV2 ExpLossCV1 ExpLossCV2 BrierCV1 BrierCV2 AUCCV1 AUCCV2 Cardinality Sfinal1 Cardinality Sfinal2 α̂cor

ρ = 0.1
true β 0.026 0.039 0.093 0.134 0.020 0.029 0.997 0.993 27 19 0.058
EB 0.175 0.320 0.561 0.728 0.126 0.208 0.901 0.741 18 12 0.228

ρ = 0.3
true β 0.032 0.256 0.113 0.621 0.024 0.172 0.996 0.824 27 15 0.225
EB 0.219 0.329 0.596 0.701 0.153 0.211 0.856 0.732 11 9 0.215

ρ = 0.6
true β 0.067 0.351 0.313 0.870 0.051 0.228 0.983 0.706 27 12 0.247
EB 0.261 0.376 0.757 0.801 0.177 0.234 0.812 0.667 9 7 0.264

ρ = 0.9
true β 0.232 0.429 2.801 2.079 0.206 0.329 0.850 0.598 27 3 0.272
EB 0.448 0.475 0.924 0.715 0.245 0.251 0.573 0.537 8 1 0.426

prediction rule; we refer to this set as Sfinal2. The cross validation estimates
of α, the exponential loss, the Brier score and the AUC computed using
the predictors in Sfinal2, are referred to as α̂CV2, ExpLossCV2, BrierCV2 and
AUCCV2.

2.3 Results, remarks and conclusions

The following remarks and conclusions are drawn from this simulation
study.

In Table 2, we present the results of our simulations, for β and EB, with
increasing values of ρ. Model performance deteriorates with increasing ρ,
this holds for β and EB. However, the rate at which the models deteriorate
is rather slow. Only very high correlations, ρ = 0.9, completely break the
performance of the EB estimator.

Using Method 2 for variable selection, results in too few predictors,
the cardinality of Sfina12 on Table 2. For this reason, α̂CV2, ExpLossCV2,
BrierCV2 and AUCCV2 are all worse than their counterparts computed via
Method 1. We may conclude that, model selection with Method 2 is too
conservative and results in worse performance.
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Note that Sfinal2 is the index set of predictors that yielded α̂cor, and α̂CV2

is a near honest estimate of α for the set Sfinal2. We see that α̂cor is overly
optimistic about α.
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