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I. Demographic information and analysis 

 

Table S1.  Sex and age breakdown by study site. 

 

Group Region N  Men Women Mean Age Age SD Age Range 

S. Africa/Zulu Africa 100 50 50 35 14.9 18-73 

China Asia 33 15 18 23.3 2.6 20-32 

India Asia 34 14 20 24.1 3 20-30 

Indonesia Asia 39 19 20 20.5 3.1 19-39 

Iran Asia 39 20 19 30 10 19-63 

Japan Asia 57 30 27 21.8 2.3 18-34 

Korea Asia 58 28 30 20.7 2 18-28 

Qatar Asia 31 0 31 22.4 2.4 19-27 

Singapore Asia 40 22 18 22.8 3.5 18-33 

Samoa Oceania 42 23 19 40.5 16.8 18-80 

Australia Oceania 32 18 14 28.8 13.4 19-72 

Austria Europe 29 8 21 30.5 6.7 22-48 

Netherlands Europe 43 25 18 23 2.3 18-27 

Slovakia Europe 71 13 58 24.4 7.4 18-60 

Spain Europe 35 18 17 22.8 4.1 18-33 

Turkey Europe 29 14 15 26.3 11.2 18-70 

Canada N. America 30 16 14 36.6 14.3 18-63 

USA N. America 48 16 32 19.4 2.6 18-24 

Ecuador/Shuar S. America 33 14 19 33.5 11.7 18-60 

Peru (Urban) S. America 30 9 21 21 2.5 18-27 

Peru (Rural) S. America 31 12 19 31.1 11 18-58 

TOTALS 6 884 384 500 26.6 7.0 18-80 

 



Table S2. Demographic information across 21 societies 

Country 

Ethnic group 

Participant's  

native language 

Language in 

which 

experiment  

was conducted 

Typical 

participant's  

English fluency 

Mass media 

exposure 

~% mass 

media 

in English 

Typical 

participant's 

education 

Community or city scale 

(number of people) 

Economic mode(s)  

of participants 

Australia English English primary language extensive 100 Some college 

small towns (<5000) and 

large cities (>500000) 

Industrial: low and 

highly skilled 

Austria German German moderate extensive 50 Some college 

small towns (<5000) and 

large cities (>500000) 

Industrial: low and 

highly skilled 

Canada English English primary language extensive 100 Some college large cities 

Industrial: low and 

highly skilled 

China Chinese 

Chinese 

(Mandarin) moderate daily 50 Some college large cities 

Industrial: low and 

highly skilled 

Ecuador/Shuar Shuar Spanish none minimal <25 4-7 years 

small villages (<200 

people) 

Hunting and gathering, 

small scale horticulture, 

agriculture, pastoralism, 

trade 

India Kannada English moderate extensive 50 Some college medium cities Industrial: highly skilled 

Indonesia Jakartan 

Formal 

Indonesian moderate extensive 75 8-12 years large cities 

Small-scale trade 

Industrial: low and 

highly skilled 

Iran Farsi Farsi 

minimal to 

moderate extensive 25 College degree large cities (>500000) 

Skilled professional in 

office or institutional 

setting 

Japan Japanese Japanese minimal daily <25 8-12 years large cities 

Industrial: low and 

highly skilled 

Korea Korean Korean moderate extensive 25 Some college large cities 

Small-scale: trade 

Industrial: low and 

highly skilled 

Netherlands Dutch Dutch 

fluent (as second 

language) extensive 75 Some college small and medium cities Industrial: highly skilled 

Peru (rural) Spanish Spanish minimal extensive <25 8-12 years small towns 

Small-scale horticulture, 

agriculture, pastoralism 

Industrial: low skill 

Peru (urban) Spanish Spanish moderate extensive 50 Some college large cities Industrial: highly skilled 

Qatar Arabic Arabic minimal extensive 50 College degree large cities 

Industrial: low and 

highly skilled 

Samoa Samoan Samoan moderate extensive <50 8-12 years 

large villages (200-1000) 

and small towns 

Small-scale: trade 

Industrial: low and 

highly skilled 

Singapore English English primary language extensive 75 Some college large cities 

Industrial: low and 

highly skilled 

Slovakia Slovak Slovak minimal extensive <25 College degree 

large towns (5000-10000) 

and small cities Industrial: highly skilled 

South Africa/Zulu isiZULU isiZulu minimal occasional <25 8-12 years 

large villages (200-1000) 

and small towns 

Small-scale agriculture, 

pastoralism, trade 

Industrial: low-skill 

Spain Spanish Spanish minimal extensive <25 Some college small and medium cities 

Industrial: low and 

highly skilled 

Turkey Turkish Turkish moderate extensive 50 8-12 years large cities 

small scale trade 

industrial: low and 

highly skilled 

USA English,  English primary language extensive 100 some college large cities 

Industrial: low and 

highly skilled 



Impact of demographic variables on response patterns 

In any given trial, respondents decided whether the presented laugh was “real” or “fake.” 

The percent responding “real” are identifying the token as a spontaneous or real laugh. Across 

our samples, participants in societies that can be characterized as small-scale and/or rural tended 

to respond with “real” less than 50% of the time (i.e., biasing their responses toward “fake”). See 

Figure S1. 

Figure S1. Responses of “real laugh” across 21 societies 

 

 
For each study site, the respective researcher provided descriptive demographic 

information, including average levels of English fluency, exposure to mass media (both in any 

language, and the proportion of media in English), education, community scale (small villages to 

large cities), and the economic mode of the society (small-scale, traditional skills to 

industrialized, professional skills). As an exploratory analysis examining the possible role of 

population characteristics affecting judgments of laughter (using the same analytical method 

described in the main text), we modeled overall response patterns as a function of the six 

different demographic variables. We started with the best fitting model from the main analysis, 

and created six new models, each one adding only one demographic variable. Based on variance 

estimates for each demographic variable, and AIC comparison across models, economic mode 

was most associated with the pattern of responses. See Table S3. Figure S2 shows the pattern of 

responses of “real” across each demographic variable. There is a clear resemblance in each of 

these variables—higher overall rates of judging a laugh as “real” when originating from societies 

with higher rates of industrialization and professional skill. Because variation within study sites 

has been eliminated, care should be taken in interpreting demographic data of this kind (Kievit, 



Frankenhuis, Waldorp, & Borsboom, 2013). Nevertheless, these data do suggest that economic 

mode, community scale, and media exposure potentially play a role in shaping people’s 

responses in our task, whereas familiarity with English appears less important. 

 

Table S3.  Best-fit model of response patterns in judgments of “real” and “fake.”  

 

Random 

effects 

  Fixed 

effects 

    

Factor Variance STD Factor Estimate SE z Pr(>|z|) 

Subject 0.26071 0.5106      

Laugh Trial 1.95308 1.3975      

Society × 

Condition 

0.04556 0.2135      

   (Intercept) -0.7256  0.2738 -2.650 0.0080 

   Condition 0.4161  0.2223 1.872 0.0612 

   Econ mode2 0.4927  0.1393   3.538 0.0004 

   Econ mode3 0.6172  0.1097   5.627 1.84e-08 

   Econ mode4 0.4509  0.1218   3.702 0.0002 

 

Participants from small-scale societies were more accurate assessing volitional laughs 

than spontaneous laughs, a pattern reversed in most of the other populations. This could reflect 

either greater skepticism regarding laughers’ emotional engagement, or greater accuracy 

differentiating between spontaneous and volitional laughs. We labeled laughs produced in 

natural conversation between friends as spontaneous; however, some may actually have been 

volitional. In contrast, laughs labeled volitional were produced on command; a naïve 

undergraduate would be unlikely to produce a spontaneous laugh in such a context. Hence, it 

may be that, rather than being more skeptical, participants from small-scale societies were 

slightly more accurate. This pattern might reflect the greater importance in small-scale societies 

of deep and complex social relationships. In such a context, accurately judging another’s degree 

of emotional engagement is critical in predicting behavior, hence listeners may be acutely 

attuned to indications of affective state. In contrast, large-scale societies have more relatively 

anonymous interactions in which the parties’ respective behaviors are shaped primarily by roles 

in the social structure; such encounters are smoothed by the polite exchange of superficial tokens 

independent of genuine sentiment—potentially leading listeners to attend less closely to indices 

thereof. 

Our stimuli suffer the limitations that i) some of our spontaneous laughs may actually be 

volitional, and ii) our volitional laughs were not produced in a social context, and thus may differ 

from more naturalistic volitional laughs. Taken together, these limitations indicate that our 

results may underestimate perceivers’ discriminative ability because of added noise. Moreover, 

acoustic analyses identifying features of laughs associated with these eliciting conditions might 

not capture additional variation introduced by other possible eliciting conditions, such as non-

interactive spontaneous laughs. Finally, it is important to note that the overall categorization of 

laughs as spontaneous, and spontaneous laughers as more aroused, are indirect as we did not 

directly collect measures from the laugh producers. These are important issues that future 

research should address.



Figure S2. Percent of responses “real” as a function of six demographic variables. 



II. Acoustic Analysis and Signal Detection Analysis 

Measures 

Having demonstrated that participants could accurately judge whether laughs are 

spontaneous or volitional, we then measured a wide range of acoustic features of the laughter to 

identify which features would best explain the variance in participants’ judgments. We examined 

the 36 laughs used in the experiment, 18 spontaneous and 18 volitional. 

For each individual laugh within a given audio clip we measured the intervoicing 

intervals. We first calculated bout duration for each laugh from the onset of visible acoustic 

energy as viewed in a spectrogram (FFT method, window length: 0.005 s., time steps: 1000, 

frequency steps: 250, Gaussian window shape, dynamic range: 50 dB) to the offset of energy in 

the final call, or bout-final inspiratory element. Calls were counted based on audible and visible 

separated voiced energy. Mean intervoicing interval (IVI) was calculated as the summed lengths 

of all unvoiced intervals between calls (i.e., voiced call offset to voice call onset) divided by call 

number minus one. Unvoiced portions were determined by a lack of formant structure as viewed 

through a spectrogram with settings described above, and lack of periodicity with standard pitch 

range values. Finally, rate of IVI was calculated using the following formula:  

 

 

 

where xi are the inter-voicing interval values, c is the total call number, and d is the bout duration 

of the series. This measure captures the averaged rate of unvoiced segments per call across a 

laugh bout. 

Using Covarep (Degottex, 2014), we extracted fundamental frequency (F0) (frequency 

range = 70-400 Hz), intensity, and harmonics-to-noise ratio of the laughs every 10 ms. F0 values 

were converted to a logarithmic scale to approximate perceptual pitch. Per each of these 

measures, we calculated traditional descriptive statistics and (except for harmonics-to-noise 

ratio) temporal dynamics measures.  

Descriptive statistics. We calculated: a) the total, voiced and unvoiced duration of each laugh, as 

well as the rate of intervoicing interval (IVI), b) the mean, standard deviation, median, 

interquartile range, coefficient of variation (standard deviation divided by the mean) and mean 

absolute deviation of pitch, intensity, and harmonics-to-noise ratio. 

Temporal dynamics measures. Traditional descriptive statistics do not capture other crucial 

aspects of time-series properties such as their regularity over time and the temporal dependence 

between successive data points. These properties express the stability and complexity of voice 

production and have proven particularly useful to assess vocal behavior in a wide variety of 

contexts (e.g. Cummins et al., 2015; Fusaroli et al., 2016; Washington et al., 2012). To assess 

these temporal dynamics we employed two non-linear methods: a) Recurrence Quantification 

Analysis (RQA) of both voiced/unvoiced sequences and pitch (Marwan et al., 2007); and b) 



Teager–Kaiser energy operator of pitch (TKEO) (Tsanas et al., 2012). RQA is a general non-

linear time-series analysis tool that quantifies multiple aspects of temporal stability of a time 

series, such as how repetitive, noisy, or stationary it is. 

Relying on the time series in each laugh (e.g., a sequence of estimated pitch regularly 

sampled over time), RQA reconstructs the phase space of possible combinations of states and 

quantifies the structure of recurrence; that is, the number of instances in which the time series 

displays repeated dynamics, and the characteristics of these repetitions. To apply RQA, two steps 

are necessary: 1) reconstructing the phase space underlying the time series, and 2) production of 

a recurrence plot. The phase space of a time series is an n-dimensional space in which all 

possible states of a system are represented, so that it is possible to portray the trajectories of the 

system’s behavior, be it periodic (repeatedly crossing the same regions at regular intervals), 

random, or chaotic. To reconstruct the phase space, we applied a time-delay method to each time 

series. After reconstructing the phase space, we constructed recurrence plots for each time series. 

Black dots on the plots represent every occasion at which a phase space trajectory goes through 

approximately the same region in the phase space. In mathematical terms, if we represent the 

trajectory of a system as 

                                                          

 
                                                         

the corresponding recurrence plot is based on the following recurrence matrix: 

  

 

where N is the number of considered states of the system and  ≈  indicates that the two states 

are equal up to an error (or distance) ε. Note that this ε is essential in the case of continuous 

variables (as in F0) as systems often do not recur exactly, but only approximately revisit states. 

To statistically analyze differences in laughs, we performed RQA on the recurrence plots. This 

makes it possible to statistically compare different dynamic systems (e.g., different dyads) in 

terms of such dynamics as the stability, structure, and complexity in the behavior of the system. 

Specifically, we analyzed: 

Amount of repetition: The percentage of values that recur (are repeated) in the time series 

independently of the lag (recurrence rate, RR). 

 

Stability of repetition: articulated in:  

Average length of sequences repeated (L) 

 

 



 

Length of longest repeated sequence (LMAX)  

 

 

 

For more details about these indexes see Marwan et al. (2007).  

TKEO has been widely employed to quantify jitter and shimmer; that is, perturbations in 

the regular cycles of pitch and intensity, respectively, which often characterize situations of 

stress and arousal, and are impacted by the ability to control the speech production system. 

TKEO is calculated as  

 

 

 

where the subscript n denotes the nth entry of the vector x (in our case, the time series of pitch). 

We computed the mean, standard deviation and 5th, 25th, and 95th percentile values of TKEO. 

 Overall, this resulted in 39 features for each laugh.  

 

 

 

 

 

 

 

 

 

 



Table S4. 39 extracted features in acoustic analysis. 

 

Voiced / Unvoiced 

segments 

Pitch Intensity Harmonics to 

Noise Ratio 

(HNR) 

    

Total duration of the 

laugh 

Pitch Mean Intensity Mean HNR Mean 

 

Voiced duration Pitch SD Intensity SD HNR SD 

Unvoiced duration    

Mean intervoicing 

interval (IVI) 

Pitch Median Intensity Median HNR Median 

 Pitch IQR Intensity IQR HNR IQR 

    

 Pitch CV 

 

Pitch Mean 

Absolute Deviation 

 

Intensity CV 

 

Intensity Mean 

Absolute Deviation 

HNR CV 

 

HNR Mean 

Absolute 

Deviation 

 Recurrence Rate 

(RR) 

 

Recurrence Rate (RR)  

 Mean length of 

recurrent sequence 

(L) 

Mean length of 

recurrent sequence 

(L) 

 

 Maximum length of 

recurrent sequence 

(LMAX) 

Maximum length of 

recurrent sequence 

(LMAX) 

 

 Mean TKEO Mean TKEO  

 SD of TKEO SD of TKEO  

 5th percentile of 

TKEO 

5th percentile of 

TKEO 

 

 25th percentile of 

TKEO 

25th percentile of 

TKEO 

 

 95th percentile of 

TKEO 

95th percentile of 

TKEO 

 

 

This dataset was used to assess which acoustic features i) best discriminate between 

spontaneous and volitional laughs, and ii) might be employed by listeners when judging whether 

a laugh was spontaneous (“real”) or volitional (“fake”). We call this measure the Spontaneity  

Ratio (SR), defined as the overall likelihood of each laugh being judged as spontaneous.  

To examine cross-cultural reliability, we then employed the selected features to predict 

within-cultures SR and assessed the amount of variance explained through Adjusted R2. All 

acoustic features were linearly transformed on a scale from 0 to 1 for better performance in the 

feature selection process. 



Analysis and machine learning process 

Feature selection. The process described above produces a large set of features, exemplifying 

what is commonly termed the curse of dimensionality. In other words, the presence of a large 

number of features makes the statistical models both difficult to interpret and at risk of 

overfitting, producing results that are not generalizable. To address this, we used a common 

algorithm to select a parsimonious subset of features, the Elastic Net extension of the LASSO 

(Zou & Hastie, 2005). In principle, this step could reduce overall accuracy, but it increases the 

interpretability and generalizability of the results; that is, the ability to accurately describe new 

laughs with characteristics similar to the laughs in the current study. 

 

Statistical models. To assess the overall model relying on the selected features, we used a 5-fold 

cross-validated logistic regression to discriminate spontaneous versus volitional laughs, and a 5-

fold cross-validated linear regression model to reconstruct participants’ likelihood of judging a 

given laugh to be spontaneous (SR). The dataset was divided into 5 subsets (or folds) each 

containing a non-overlapping sixth of the laughs. A combination of 4 folds was used for feature 

selection and model fitting. The model was then assessed on the remaining fold. This procedure 

was repeated for all four possible combinations of folds, hence the accuracy of the model was 

assessed only on data on which it had not been trained. We repeated the cross-validation process 

a total of 100 times, randomly permuting the data before splitting into training and testing 

subsets to ensure stability of the results across different random splits in 5 folds. Post-hoc testing 

was applied to estimate Betas and standard errors of the predictors in the regression models. 

 

Samoan judgments and acoustic-based model prediction. There is a notable divergence between 

the use of acoustic features by our Samoan participants and the other study populations. The 

acoustic-based model explained none of the variance in their responses, and alternative models 

using other acoustic features also failed to explain variance. Importantly, the inability of the 

model to explain Samoan’s judgments of laughs being spontaneous does not suggest they use 

these features in some opposing way, but rather that they were likely relying on some other 

feature(s) not captured by our acoustic analysis. Across all societies, Samoan overall accuracy 

was the lowest (56%), and their rate of judging laughs as volitional was highest (60%). The 

finding deserves specific follow-up in future research. 

 



Table S5. Variance (measured as r squared) in the judgments of laughs being spontaneous (i.e., 

“real”) for each sample of participants explained by the acoustic-based model.  

 

Group Region R2 

Australia Oceania 0.62 

Samoa Oceania 0 

South Africa/Zulu Africa 0.48 

Singapore  Asia 0.60  

Korea Asia 0.63 

Japan Asia 0.63  

India Asia 0.56  

Iran Asia 0.70 

China Asia 0.59  

Indonesia Asia 0.64  

Qatar Asia 0.70 

Netherlands Europe 0.64  

Slovakia Europe 0.66  

Turkey Europe 0.67 

Spain Europe 0.65  

Austria Europe 0.60  

Canada N. America 0.59 

USA N. America 0.64 

Ecuador (Shuar) S. America 0.24 

Peru (urban) S. America 0.66  

Peru (rural) S. America 0.54 

 

Signal detection analysis  

We performed a signal detection analysis in the form of a multilevel probit regression 

(DeCarlo, 1998). The binomial response (judgment of “real” versus “fake”) was predicted by 

intercept (equivalent to criterion) and condition (spontaneous versus volitional laugh; equivalent 

to sensitivity). Both parameters were also modelled as random effects; that is, varying by society 

and participant, and as potentially correlated. The intercept indicates a bias in the responses—in 

particular, lower negative bias values indicate a greater tendency to respond “fake.” Note that 

multilevel models perform partial pooling of information, so estimates of each society are 

influenced by the data available for all countries. This might reduce differences between 

societies, but it also provides more conservative estimates, and has been shown to improve 

generalizability of the models (Gelman & Hill, 2007). See Table S6 for all values.  

To draw ROC curves by society, we estimated the predictions of the model above and 

employed them to assess the effects of varying decision thresholds on the sensitivity and 

specificity of the model binomial predictions.



Table S6. Signal detection values across 21 societies.   

     

 

Society                                 

Hit  False 

alarm  

Correct 

rejection 

Sensitivity  Bias  AUC 

 

Australia 

 

0.67 

 

0.36 

 

 

0.64 

 

 

0.79 

 

 

-0.37 

 

0.68 

Austria 0.69 

 

0.35 

 

0.65 

 

0.87 

 

-0.38 

 

0.70 

Canada 0.65 

 

0.44 

 

0.56 

 

0.65 

 

-0.27 

 

0.65 

China 0.67 

 

0.39 

 

0.61 

 

0.77 

 

-0.34 

 

0.68 

Ecuador (Shuar) 0.50 

 

0.37 

 

0.63 

 

0.41 

 

-0.38 

 

0.64 

India 0.56 

 

0.37 

 

0.63 

 

0.53 

 

-0.36 

 

0.63 

Indonesia 0.63 

 

0.35 

 

0.65 

 

0.73 

 

-0.39 

 

0.66 

Iran 0.59 

 

0.32 

 

0.68 

 

0.68 

 

-0.42 

 

0.67 

Japan 0.71 

 

0.34 

 

0.66 

 

0.95 

 

-0.40 

 

0.71 

Korea 0.71 

 

0.34 

 

0.66 

 

0.94 -0.40 

 

0.72 

Netherlands 0.69 

 

0.33 

 

0.67 

 

0.90 

 

-0.40 

 

0.71 

Peru (Rural) 0.53 

 

0.31 

 

0.69 

 

0.56 

 

-0.44 

 

0.65 

Peru (Urban) 0.67 

 

0.36 

 

0.64 

 

0.80 

 

-0.37 

 

0.68 

Qatar 0.63 

 

0.35  

 

0.65 

 

0.71 

 

-0.38 

 

0.68 

S. Africa (Zulu) 0.51 

 

0.31 

 

0.69 

 

0.52 

 

-0.47 

 

0.63 

Samoa 0.46 

 

0.36 

 

0.66 

 

0.36 

 

-0.42 

 

0.58 

Singapore 0.66 

 

0.42 

 

0.58 

 

0.68 

 

-0.29 

 

0.65 

Slovakia 0.66 

 

0.38 

 

0.62 

 

0.74 

 

-0.33 

 

0.67 

Spain 0.68 

 

0.38 

 

0.63 

 

0.81 

 

-0.35 

 

0.68 

Turkey 0.66 

 

0.32 

 

0.68 

 

0.85 

 

-0.42 

 

0.70 

USA 0.69 

 

0.35 

 

0.65 

 

0.89 

 

-0.39 

 

0.70 

 



III. GLMM comparisons  

We used a model comparison approach, assessing model fit using the Akaike Information 

Criterion (AIC). This approach allows researchers to assess which combination of variables best 

fit the pattern of data without comparison to a null model. Model 4 below (bolded) had the best 

fit, and is reported in the main text. The fit was almost identical to Model 6, the only difference 

being that Model 6 includes a non-significant sex difference in performance. 

Table S7. Model comparisons for accuracy in the judgment task. 

 

Model Fixed factors Random 

factors 

Estimate SE z Variance  SD AIC 

M1 (Intercept)  0.6001 0.2270 2.643   33814.2 

 Condition  0.2298 0.1946 1.181    

  Subject    0.06618 0.2573  

  Laugh Trial    1.52421 1.2346  

M2 (Intercept)  0.5992 0.2326 2.576   33693.1 

 Condition  0.2333 0.1965 1.187    

  Subject    0.02764 0.1662  

  Society    0.03930 0.1982  

  Laugh Trial    1.52717 1.2358  

M3 (Intercept)  0.57416 0.22870 2.511   33814.2 

 Condition  0.23002 0.19498 1.180    

 Sex  0.04579 0.03216 1.424    

  Subject    0.06567 0.2563  

  Laugh Trial    1.52426 1.2346  

M4 (Intercept)  0.6252 0.2389 2.617   33416.6 

 Condition   0.1908 0.2188 0.872    

  Subject    0.03005 0.1733  

  Society x 

Condition 

   0.08939 0.2990  

  Laugh Trial    1.53619 1.2394  

M5 (Intercept)  0.57607 0.23341 2.468   33693.3 

 Condition  0.23340 0.19663 1.187    

 Sex  0.04057 0.03036 1.336    

  Subject    0.02728 0.1652  

  Society    0.03918 0.1979  

  Laugh Trial    1.52720 1.2358  

M6 (Intercept)  0.60190 0.23909 2.517   33416.9 

 Condition  0.19096 0.21849 0.874    

 Sex  0.04092 0.03072 1.332    

  Subject    0.02968 0.1723  

  Society x 

Condition 

   0.08929 0.2988  

  Laugh Trial    1.53620 1.2394  

M7 (Intercept)  0.52005 0.23473 2.216   33686.9 

 Condition  0.33952 0.20000 1.698    

 Sex  0.12550 0.04207 2.983    

 Condition x 

Sex 

 -0.15839 0.05434 -2.915    

  Subject    0.02735 0.1654  

  Society    0.03921 0.1980  

  Laugh Trial    1.53234 1.2379  

         



IV. Full text of experimental instructions 

The following text was used in the experiment. If the participants did not speak English, 

these instructions were translated into the language to be used at the study site (usually the native 

language of the participants). If participants were unable to read, the instructions were read aloud 

to the participant and their answers entered into the computer by the experimenter. 

 

Full text of instructions 

Welcome to the fake-or-real laugh study. In this experiment you will listen to recordings of 

women laughing. In some of the recordings, the women were asked to laugh, but were not given 

any other reason for laughing (we call these fake laughs). Other recordings are of women 

laughing naturally while talking to a friend (we call these real laughs). For each recording, your 

job is to decide whether it is fake laugh or a real laugh. Each recording is of a different woman. 

Before we begin with the actual study, you will be able to practice with one recording so that you 

will be familiar with the procedure. 

When you are ready, press the space bar to hear the practice recording. 

Do you think this laugh is a fake laugh or a real laugh? 

Press 0 if you think that the laugh is fake. Press 1 if you think that the laugh is real.   

If you have any questions, please ask the experimenter. If not, press the Enter key and the 

experiment will begin. 

When you are ready, press the space bar to hear the recording. 

You have now listened to all of the recordings. Thank you for your participation. Please tell the 

experimenter that you are finished. 

 

V. Laughter samples 

1. Spontaneous laugh 1 (spontaneous1.wav) 

2. Sponatenous laugh 2 (spontaneous2.wav) 

3. Volitional laugh 1 (volitional1.wav) 

4. Volitional laugh 2 (volitional2.wav) 
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