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Part A. Bias of FE and FEGS Models 

 

We show here, analytically and by Monte Carlo simulation, why FE and FEGS are inconsistent estimators for 

the MWP under general patterns of marital selection that are allowed in the framework of FEIS estimation. The 

main points are (1) the FE estimator is biased if the decision of whether to marry is related to the steepness of the 

wage trajectory, (2) the FEGS estimator allows for an association of the steepness of the wage trajectory to the 

time-constant propensity of marriage, but rules out any relation to marriage timing, and (3) the FEIS estimator is 

consistent in both cases. 

 

Statistical Framework 

 

Write the model given in Equation 2 in the main text in more general terms as  

 

𝑦𝑖𝑡 = 𝒙1𝑖𝑡𝜷 + 𝛼1𝑖 + 𝒙2𝑖𝑡𝜶2𝑖 + 𝜀𝑖𝑡,       (S1) 

 

where 𝑦𝑖𝑡 is the wage, 𝒙1𝑖𝑡 is a (1 𝑋 𝐾) vector of covariates, including an indicator for marriage 𝑚𝑖𝑡, and 𝒙2𝑖𝑡 is 

a (1 𝑋 𝐽) vector of variables that interact with unobservables (work experience 𝑒𝑥𝑝𝑖𝑡  and its square, in our case). 

Everything else is defined as in the main text.  

 

(1) Under the model given in Equation S1, the standard FE estimator is not consistent. Let 𝜶2𝑖 ≡ 𝜶2 + 𝒂𝑖, where 

individual-specific trends 𝒂𝑖 are deviations from the common trajectory for the whole population. If we run a 

standard FE model, we get 

 

�̈�𝑖𝑡 = �̈�1𝑖𝑡𝜷 + �̈�2𝑖𝑡𝜶2 + �̈�2𝑖𝑡𝒂𝑖 + 𝜉�̈�𝑡 , 

 

where the dots indicate that all variables have been de-meaned. Due to de-meaning, 𝛼1𝑖 dropped out of the 

equation. However, individual deviations from the common wage trajectory are now contained in the error term. 

Hence, even if the usual strict exogeneity assumption that 𝐸(�̈�𝑖𝑡
′ 𝜉𝑖𝑡) = 𝟎 holds, consistency of FE hinges on the 

additional assumption that 𝐸(�̈�1𝑖𝑡
′ �̈�2𝑖𝑡𝒂𝑖) = 𝟎.  

 

The assumption is certainly violated if marriage is more likely for men with higher-than-average wage growth. 

Since �̈�𝑖𝑡 = 𝑚𝑖𝑡 − �̅�𝑖 is part of �̈�1𝑖𝑡 ,  the assumption rules out any relation of individual wage trajectories to the 

person-specific time-average of the marriage dummy, �̅�𝑖. Hence, FE estimates a biased effect of marriage if the 

decision whether to marry is related to the steepness of the wage career. A sufficient assumption for consistency 

of FE is that individual deviations from the common slope of �̈�2𝑖𝑡 (work experience) are not related to any of the 

de-meaned covariates (including the marriage dummy). Formally, a sufficient condition is 𝐸(𝒂𝑖|�̈�𝑖𝑡) = 𝟎, which 

is a version of the well-known assumption of parallel trends in outcomes.  

 

(2) Similarly, the standard strict exogeneity assumption does not guarantee consistency of the FEGS estimator in 

the situation described by Equation S1. To see why, define 𝜶2𝑖 ≡ 𝐸(𝜶2𝑖  | 𝑡𝑟𝑒𝑎𝑡𝑖) + 𝒅𝑖, where the expectation of 

𝜶2𝑖 is either 𝜶20𝑖 or 𝜶21𝑖, depending on the treatment group (ever-married or never-married), and 𝒅𝑖  are 

individual deviations from the treatment group–specific trajectories. If we estimate an FEGS model, we get  

 

�̈�𝑖𝑡 = �̈�1𝑖𝑡𝜷 + �̈�2𝑖𝑡𝜶20𝑖 + 𝑡𝑟𝑒𝑎𝑡𝑖 ∙ �̈�2𝑖𝑡𝜶21𝑖 + �̈�2𝑖𝑡𝒅𝑖 + �̈�𝑖𝑡, 
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or, using more compact notation, 

 

�̈�𝑖𝑡 = �̈�𝑖𝑡𝜸 + �̈�𝑖𝑡 ,          

 

where, for simplicity, �̈�𝑖𝑡 includes �̈�1𝑖𝑡, �̈�2𝑖𝑡, and 𝑡𝑟𝑒𝑎𝑡𝑖 ∙ �̈�2𝑖𝑡. Again, 𝛼1𝑖 is eliminated by de-meaning the data. 

While  𝜶20𝑖 and 𝜶21𝑖 are controlled explicitly, such that the assumption of parallel trends in the two treatment 

groups is no longer needed, individual deviations from the group-specific slopes are contained in the error term. 

Thus, �̈�𝑖𝑡 = �̈�2𝑖𝑡𝒅𝑖 + �̈�𝑖𝑡 is a composite error term. Following the reasoning for the FE model, strict exogeneity 

of 𝜓𝑖𝑡  is not sufficient for consistency of FEGS. In addition, it must hold that 𝐸(�̈�1𝑖𝑡
′ �̈�2𝑖𝑡𝒅𝑖) = 𝟎. A sufficient 

assumption is that individual deviations from the group-specific slopes of �̈�2𝑖𝑡 (work experience) are not related 

to the de-meaned covariates (notably, the marriage dummy). Formally, 𝐸(𝒅𝑖|�̈�𝑖𝑡) = 𝟎.  
 

Obviously, this condition of common trends within treatment groups is a weaker condition than the assumption 

of parallel trends needed for FE, because FEGS does allow for mean differences in wage growth between the 

never-married and ever-married men. What FEGS rules out is further individual differences in wage growth 

between ever-married men that are related to marriage timing.  

 

In practice, FEGS reduces the bias of FE. Intuitively, the bias is smaller with FEGS because including the 

interaction of a time-constant treatment indicator 𝑡𝑟𝑒𝑎𝑡𝑖 and �̈�2𝑖𝑡 in the regression model controls for the relation 

of 𝒅𝑖  to the person-specific mean of marriage (�̅�𝑖). However, 𝒅𝑖  may still be related to deviations from the 

person-means of the variables in 𝒙1𝑖𝑡 (e.g., to 𝑚𝑖𝑡 − �̅�𝑖). Hence, the estimate of the treatment effect would still 

be biased, because 𝐸(�̈�1𝑖𝑡
′ �̈�2𝑖𝑡𝒅𝑖) ≠ 𝟎.  

 

How can this happen? Consider a simple example with variation of marriage timing. Suppose we observe 

persons for the first three years of their careers, where all of them are never-married at 𝑒𝑥𝑝𝑖𝑡 = 0 and some of 

the treated persons marry at 𝑒𝑥𝑝𝑖𝑡 = 1, and others marry at 𝑒𝑥𝑝𝑖𝑡 = 2. Then �̅�𝑖 takes value 0 for each of the 

never-married persons, but values .67 and .33 for persons marrying “early” and “late,” respectively. In this case, 

if the timing of marriage varies according to values of 𝜶2𝑖, 𝒅𝑖  remains related to (𝑚𝑖𝑡 − �̅�𝑖). Hence, it would not 

be sufficient to control for group-specific trends in just one control and one treatment group, as done by 

interacting 𝑡𝑟𝑒𝑎𝑡𝑖 and 𝑒𝑥𝑝𝑖𝑡 . (An interaction with 𝑒𝑥𝑝𝑖𝑡  would be needed for each level of �̅�𝑖. In fact, in a 

simple setting with fully balanced panels and without further covariates, a possible remedy of the FEGS 

estimator is an extension of the specification, where the interaction of 𝑡𝑟𝑒𝑎𝑡𝑖 and �̈�2𝑖𝑡 is replaced by a set of 

dummy interactions of each level of �̅�𝑖 and �̈�2𝑖𝑡. This extended specification would recover the true treatment 

effect, since it is equivalent to FEIS.)   

 

From this discussion, FEGS would fail if selection into treatment (marriage) varies over time, and the pattern of 

selection on the individual level, that is, marriage timing, depends on the values of (some of the) individual-

specific unobserved variables that also determine the growth of the outcome (the wage). In other words, unlike 

FE, FEGS allows that unobservables in 𝜶2𝑖 determine whether a man eventually marries. What FEGS rules out 

is that 𝜶2𝑖 determines when he marries.  

 

(3) Neither of the additional conditions for 𝒂𝑖 or 𝒅𝑖  are needed for consistency of FEIS, however, because a 

more general within transformation is applied to the data on the individual level. As described in the methods 

section of the article, to estimate the effects of marriage and other covariates in 𝒙1𝑖𝑡, for each variable only the 

variation that is not due to 𝒙2𝑖𝑡 (experience) is used. Therefore, both 𝛼1𝑖 and 𝜶2𝑖 drop out of Equation S1, along 

with 𝒙2𝑖𝑡. The FEIS estimation equation is given by 

 

�̃�𝑖𝑡 = 𝒙1𝑖𝑡𝜷 + 𝜖�̃�𝑡,  

 

where the tilde denotes that the respective variable has been de-trended. The FEIS estimator is given by 

 

�̂�𝐹𝐸𝐼𝑆 = 𝜷 +  (𝑁−1 ∑ ∑ 𝒙1𝑖𝑡
′𝑇

𝑡=1
𝑁
𝑖=1 𝒙1𝑖𝑡)−1(𝑁−1 ∑ ∑ 𝒙1𝑖𝑡

′𝑇
𝑡=1

𝑁
𝑖=1 𝜖�̃�𝑡) .    

 

In contrast to the FE (or FEGS) model, 𝒂𝑖 (or 𝒅𝑖) is not part of the error term. Strict exogeneity of 𝜖𝑖𝑡 is thus 

sufficient for consistency. 

 

Monte Carlo Simulation  

 

For each of 1,000 replications, panel data are set up with i=1,…,1000 units, each observed at t=0,…,9. The data 
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are then generated according to the following process 

 

𝑦𝑖𝑡 = 𝛽𝑥𝑖𝑡 + 𝛼1𝑖 + 𝛼2𝑖  𝑡 + 𝜀𝑖𝑡 ,  

𝑥𝑖𝑡 = I[𝑃(𝜃1𝑖 + 𝜃2𝑖𝑡 + 𝜃3𝛼2𝑖 + 𝜃4𝛼2𝑖𝑡) > 0.5] , 
 

where 𝑦𝑖𝑡 is the outcome of unit i at time t and 𝜀𝑖𝑡 is a Gaussian error term. The true treatment effect equals 𝛽. In 

the simulations, we set 𝛽 = 1. Further, we set 𝛼1𝑖 = 0 to focus on the bias due to 𝛼2𝑖. 𝛼2𝑖  is an individual-

specific and time-constant random variable that is normally distributed with mean and variance equal to 1, that 

is, 𝛼2𝑖~𝑁(1,1) for all scenarios.  

 

Finally, selection into time-varying treatment 𝑥𝑖𝑡  is modeled by a binary indicator variable 𝐼 that equals 1 if the 

probability of treatment 𝑃 is larger than .5, and 0 otherwise. We assume that 𝑃 follows the logistic distribution 

function. The set of parameters 𝜃1𝑖 , 𝜃2𝑖, 𝜃3, 𝜃4 is used to vary selection into treatment according to the following 

scenarios: 

 

Scenario (1):  𝜃1𝑖~𝑁(−0.9,0.1), 𝜃2𝑖~𝑁(0.1,0.1), 𝜃3 = 𝜃4 = 0.  
Scenario (2):  𝜃1𝑖~𝑁(−0.9,0.1), 𝜃2𝑖~𝑁(0.1,0.1), 𝜃3 = 0.1, 𝜃4 = 0.  
Scenario (2’): as scenario (2), but 𝑥𝑖𝑡 = 1 if 𝑡𝑟𝑒𝑎𝑡𝑖  = 1 and 𝑡 > 𝑈~[0,9] 
  (timing of treatment assigned randomly). 

Scenario (3):  𝜃1𝑖~𝑁(−0.9,0.1), 𝜃2𝑖~𝑁(0,0), 𝜃3 = 𝜃4 = 0.1.  
 

The simulation results (shown in Table S1) document the vulnerability of FE and FEGS models to individual-

specific outcome trajectories that are related to treatment.  

 

Scenario (1): All three estimators (FE, FEGS, and FEIS) provide the true value, as expected. Here, the outcome 

(e.g., the wage) follows an individual-specific time-trend, 𝛼2𝑖, but this trend is not systematically related to 

treatment (e.g., marriage), because 𝜃3 = 𝜃4 = 0. In this situation, it is sufficient to control for a common time-

trend as in a standard FE model. The results for this scenario show that all three models can handle individual 

time-trends in the treatment variable (𝜃2𝑖), as long as these trends are not systematically related to the outcome. 

 

Scenario (2): FE and FEGS are biased, and FEIS is unbiased. In this setting, individual time-trends in the 

outcome are related to treatment (because 𝜃3 ≠ 0). From the discussion above, it is clear that FE cannot handle 

this situation. It may be surprising that the FEGS estimates are also biased in this setting. After all, FEGS should 

be inconsistent only if 𝛼2𝑖 affects the slope of the time-trend of treatment (i.e., the change of the probability of 

treatment depends on 𝛼2𝑖). FEGS should be consistent if 𝛼2𝑖 merely shifts the level of the treatment variable up 

or down. However, the timing of treatment does vary by the value of 𝛼2𝑖 due to construction of the treatment 

indicator. (We set 𝑥𝑖𝑡 = 1 after the treatment probability exceeds .5. Because 𝑥𝑖𝑡  is a discrete variable, units with 

high 𝛼2𝑖 get treatment earlier even though the time-trend of the continuous treatment probability 𝑃 does not 

depend on 𝛼2𝑖.) However, note that the bias of the FEGS estimator is much smaller than the bias returned by the 

standard FE model, because FEGS controls for mean differences in the treatment propensity between the 

treatment groups. Furthermore, the FEIS model identifies the true treatment effect. Results for scenario (2’) 

show that the bias of FEGS is really due to the relation of 𝛼2𝑖 to the timing of treatment. If we assign the timing 

of treatment at random, FEGS provides the true effect on average.  

 

Scenario (3): The FE and FEGS estimators are inconsistent, and FEIS is consistent. Here, the time-trend of the 

treatment variable explicitly varies by the individual level of 𝛼2𝑖 (because 𝜃4 ≠ 0). Thus, in both the outcome 

equation and the equation for selection into treatment, 𝛼2𝑖 interacts with 𝑡. In other words, the same unobserved 

variables that drive the growth of the outcome also affect the timing of treatment. For example, persons with 

higher values on 𝛼2𝑖 may not only experience stronger wage growth, but may also marry earlier. In this scenario, 

the bias of FE is huge and even FEGS is far from the truth.  

 

Taken together, the simulations confirm the analytic results. In short, both standard FE and FEGS are biased if 

the timing of marriage is related to the same unobserved variables that also drive the steepness of the individual 

wage trajectory. As we note in the methods section of the main text, FEGS reduces the bias of the standard FE 

model considerably, because the model allows for group-specific trends in the wage and in marital selection. 

However, the model is still biased if not only the decision of whether to marry, but also the decision of when to 

marry, is related to the steepness of the career. FEIS does not need additional assumptions for individual 

deviations from an estimated wage trajectory, because each man is allowed to have his own trajectory. As a 

result, FEIS provides consistent estimates of the MWP even if the marriage propensity or marriage timing is 

related to individual wage growth. This is why FEIS is our preferred choice for estimation of the MWP. 
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Table S1. Simulation results demonstrating the bias of FE and FEGS due to individual-specific slopes 

Estimator (1) (2) (2’) (3) 

FE 1.004 1.689 1.569 6.768 

 (.247) (.235) (.232) (.165) 

FEGS .997 1.131 1.002 1.329 

 (.152) (.138) (.168) (.108) 

FEIS .998 1.001 .998 1.000 

 (.054) (.052) (.051) (.051) 

Number of units (N) 1,000 1,000 1,000 1,000 

Number of time points (T) 10 10 10 10 

Number of observations (NT) 10,000 10,000 10,000 10,000 

Prop. of treated units  50.0 54.3 54.3 54.0 

Prop. of treated observations  20.1 23.9 29.4 25.5 

Note: Simulation results (1,000 replications) for standard fixed-effects model (FE), fixed-effects model with 

group-specific slopes (FEGS), and fixed-effects model with individual-specific slopes (FEIS). The table shows 

mean of regression coefficients and mean of panel-robust standard errors (in parentheses).  

 

  



5 
 

Part B. Simulation results showing consistency of the FEIS estimator for a time-varying treatment 

 

Table S2. Monte Carlo simulations for FEIS model with time-varying binary treatment 

 Linear  

impact function 

 Dummy  

impact function 

 b s.e.  b s.e. 

Treated (ref.: not treated) .999 .181    

Time since treatment .101 .172    

Time since treatment 0 (ref.: not 

treated) 

   .998 .215 

Time since treatment 1    1.101 .369 

Time since treatment 2    1.197 .596 

Time since treatment 3    1.299 .898 

Time since treatment 4    1.399 1.281 

Time since treatment 5    1.498 1.746 

Time since treatment 6    1.596 2.296 

Time since treatment 7    1.691 2.935 

Time since treatment 8    1.790 3.674 
Note: Simulation results (1,000 replications) for fixed-effects model with individual-specific slopes (FEIS), mean of 

regression coefficients (b), and panel-robust standard errors (s.e.). Table shows estimates for two specifications of time-

varying treatment effects: linear impact function specifies effect of binary treatment indicator and linear effect of time since 

treatment; dummy impact function specifies effect of dummies for each time period after treatment.  

 

Simulation setup. For each replication, panel data are set up with i=1,…,200 units observed at t=1,…,10 points in 

time. 100 units get a binary treatment. Timing of the treatment is assigned randomly (uniformly distributed over 

t).  

 

Data generating process. Data are generated according to the following equation 

 

𝑦𝑖𝑡 = 𝛼2𝑖 𝑡𝑖𝑡 + 𝛼3𝑖  𝑡𝑖𝑡
2 + 𝛽1 𝑥𝑖𝑡 + 𝛽2 𝑥𝑑𝑖𝑡 + 𝛼1𝑖 + 𝜀𝑖𝑡 ,  

 

where 𝑦𝑖𝑡 is the outcome of unit i at time t, 𝑥𝑖𝑡  is a binary treatment indicator (=1 after treatment), 𝑥𝑑𝑖𝑡  is time 

since treatment, and 𝜀𝑖𝑡 is a Gaussian error term. The true treatment effect is time-varying. Variation of the effect 

over time is specified by parameters 𝛽1 and 𝛽2. At zero duration (𝑥𝑑𝑖𝑡 = 0), the treatment effect is 𝛽1 = 1; each 

period after treatment, the effect increases by 𝛽2 = 0.1. 

 

𝛼1𝑖 , 𝛼2𝑖, 𝛼3𝑖  are time-constant (unobserved) variables that are normally distributed with means that differ by 

treatment group (variances are set to the same values).  

 

Never-treated units: 𝛼1𝑖~𝑁(0,0.1), 𝛼2𝑖~𝑁(0,0.01), 𝛼3𝑖~𝑁(0,0.001).  

 

Ever-treated units: 𝛼1𝑖~𝑁(1,0.1), 𝛼2𝑖~𝑁(0.1,0.01), 𝛼3𝑖~𝑁(−0.01,0.001).  

 

Thus, 𝛼1𝑖 are unit-specific constants and produce a time-constant difference in mean outcomes between 

treatment groups. 𝛼2𝑖 and 𝛼3𝑖 are unit-specific slopes for time. They produce a time-varying difference in mean 

outcomes between treatment groups (non-parallel trends). 

 

 

  



6 
 

Part C. Full regression results for descriptive evidence on wage profiles (Figure 2) and 

time-path of the MWP (Figure 4) 

 

Table S3. FE, FEGS, and FEIS models with time-varying estimate of the MWP 

 FE FEGS FEIS FEIS  

w/o controls 

Years in 1st marriage: 1 year  .054*** .028** –.003 .011 

(ref.: never-married) (.009) (.009) (.010) (.010) 

2 years .078*** .046*** .000 .016 

 (.010) (.011) (.013) (.013) 

3 years .083*** .045*** –.007 .011 

 (.011) (.012) (.015) (.015) 

4 years .101*** .057*** –.002 .022 

 (.012) (.013) (.018) (.018) 

5 years .108*** .058*** –.015 .013 

 (.013) (.014) (.020) (.020) 

6 years .100*** .043** –.027 .005 

 (.014) (.016) (.022) (.022) 

7 years .120*** .058*** –.026 .013 

 (.015) (.017) (.026) (.025) 

8 years .121*** .053** –.038 .006 

 (.016) (.019) (.028) (.028) 

9 years .137*** .063** –.041 .008 

 (.017) (.020) (.031) (.031) 

10 years .114*** .035 –.064* –.008 

 (.018) (.021) (.032) (.033) 

11 to 15 yrs. .138*** .045 –.071 –.001 

 (.018) (.024) (.037) (.038) 

Currently enrolled –.201*** –.199*** –.123*** –.123*** 

 (.010) (.010) (.010) (.010) 

Years of education .068*** .066*** .007 .058*** 

 (.004) (.004) (.006) (.004) 

One child (ref.: no child) .009 .010 –.015  

 (.009) (.009) (.010)  

Two children .012 .015 –.023  

 (.012) (.012) (.016)  

Three or more children –.028 –.025 –.045  

 (.019) (.019) (.025)  

Tenure (years)                                   .011*** .011*** .008***  

 (.001) (.001) (.001)  

Work experience (years) .043*** .035***   

 (.003) (.003)   

Experience ^ 2                                 –.061*** –.045***   

(divided by 100) (.009) (.010)   

Ever-married X Experience   .015***   

  (.003)   

Ever-married X Exp. ^ 2  –.026*   

(div. by 100)  (.011)   

Within R squared .34 .34 .02 .05 

Number of persons 4,287 4,287 4,287 4,287 

Number of person-years                          49,801 49,801 49,801 49,801 

Source: NLSY79. 

Note: Table shows regression coefficients and panel-robust standard errors (in parentheses) from fixed-effects (FE), fixed-

effects group-specific slopes (FEGS), and fixed-effects individual-slopes (FEIS) models. All models include indicators of 

grouped survey years (coefficients not shown). FEIS w/o controls: specification does not include controls for tenure and 

number of children; individual slopes specified for potential work experience (age – years of education – 5) instead of actual 

experience. FEGS: F-Test for joint significance of interactions “Ever-married X Experience” and “Ever-married X Exp. ^ 2”: 

F(2, 4286) = 16.95, p < .001. 
*p < .05; **p < .01; ***p < .001 (two-sided test). 
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Part D. Robustness checks  

Figure S1. Test for heterogeneous effects of marriage by age at marriage, wife’s employment, 

educational achievement, ethnicity, and urbanicity (FE and FEIS results) 

 

a. Age at marriage 

 
 

 

Killewald and Lundberg (2017) show that men who marry early experience the strongest wage growth. This 

finding is in line with our argument that these men are promising candidates for marriage. Our own results 

confirm this interpretation: With FEIS, the MWP is at 3.6 percent for those marrying very young (before age 23), 

1.3 percent for those marrying at typical age, and -2.5 percent for those marrying late (after age 30). Although 

these results suggest there may be some effect heterogeneity by age at marriage, none of the effects is 

significantly different from zero. Even for men marrying early, the MWP found with FEIS is small compared to 

the 8.8 percent estimated with FE. We would therefore argue that, regardless of the timing of marriage, marital 

selection on wage growth mainly explains the wage benefit found with FE models. 
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b. Wife’s employment 

 
 

The literature consistently shows a stronger MWP for men whose wife is employed less than full-time (including 

the case of a non-working wife). Killewald and Gough (2013) report a premium that is 4.2 percent higher in this 

case. Similarly, Budig and Lim (2016) estimate an MWP of 11 percent for male breadwinners, which is about 

twice as large as the premium for men in dual-earner and female breadwinner households. However, these 

studies used conventional FE models. We suspect that wife’s employment status is endogenous because women 

married to a man with strong wage growth are more likely to reduce their own market work hours. Indeed, our 

results are consistent with this explanation.  

As reported in earlier studies, we find that wife’s employment moderates the marriage premium in the FE model. 

Controlling for men’s own employment status, the MWP is higher while the spouse is not working (12.4 percent) 

or working part-time (12 percent) than if she is working full-time (6.7 percent). As expected by the specialization 

argument, the MWP seems to increase as the wife reduces her market work. However, the strong premium for 

husbands even in dual-career couples is an unexpected finding that contradicts the claim that the MWP is limited 

to traditional marriages.  

The results of the FEIS model help to interpret the FE results. If women marry men who are on a steep wage 

trajectory (promising men) regardless of their own career, this produces a spurious MWP also in dual-career 

couples. According to FEIS results the premium is close to zero and not significant regardless of the wife’s 

employment status. Hence, even a homemaking spouse does not raise husbands’ wages. Rather, it seems that 

causality runs the other way around: being married to a man with strong wage growth induces women to reduce 

employment (perhaps because of the opportunity to devote more time to childcare). This explains why FE 

estimates a larger MWP if the wife works less than full-time. Again, the evidence contradicts the specialization 

argument. 

It has been suggested to extend the FE model using an instrumental variables (IV) approach to deal with 

endogeneity of wives’ employment (Jacobsen and Rayak 1996). Our results indicate that the strong assumptions 

of this approach are not necessary if we use the FEIS model.  
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c. Ethnicity  

 
d. Educational achievement 
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e. Urbanicity 

 
 

Source: NLSY79 data. 

Note: Marital wage premium estimated by fixed-effects (FE) and fixed-effects individual-specific slopes (FEIS) models 

including interaction effects. Regression models include as further covariates number of biological children (four categories), 

tenure with current employer, years of education, indicator for persons currently enrolled in education (reference: not in 

education), and survey year dummies (grouped, seven categories). Confidence intervals (C.I.) based on panel-robust standard 

errors. Figure b. (Wife’s employment): Husband’s employment status is controlled in the models (indicators for full-time 

employment [reference], part-time employment, marginal employment, enrolled in education); wife’s employment is derived 

from her annual work hours in the past calendar year. Figure e. (Urbanicity): Models are estimated separately by first 

observed (initial) status of a man having rural or urban residence. 
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Table S4. Regression models including selection indicator, test of sample selection 

 POLS FE FEGS FEIS 

Selection indicator t+1 –.027*** –.014* –.014* .005 

(ref.: person included t+1) (.008) (.007) (.007) (.007) 

Married                      .163*** .084*** .047*** .006 

(ref.: never-married)                          (.011) (.009) (.009) (.010) 

One child (ref.: no child) –.000 .017 .011 –.015 

 (.011) (.009) (.009) (.010) 

Two children .035* .032** .014 –.025 

 (.014) (.012) (.012) (.016) 

Three or more children –.030 .000 –.023 –.057* 

 (.021) (.019) (.019) (.026) 

Currently enrolled                   .077*** .066*** .064*** .006 

(ref.: not enrolled) (.002) (.004) (.004) (.006) 

Years of education –.194*** –.195*** –.194*** –.120*** 

 (.009) (.010) (.010) (.010) 

Tenure (years) .018*** .012*** .011*** .009*** 

 (.002) (.001) (.001) (.002) 

Work experience (years)  .050*** .044*** .035***  

 (.003) (.003) (.003)  

Experience ^ 2                                 –.071*** –.058*** –.042**  

(divided by 100)                          (.012) (.010) (.013)  

Ever-married X Exp.    .017***  

   (.003)  

Ever-married X Exp. ^ 2                                   –.031*  

(divided by 100)   (.013)  

R-squared .35 .33 .33 .02 

Number of persons 3,990 3,990 3,990 3,990 

Number of person-years 44,623 44,623 44,623 44,623 

Source: NLSY79 data. 

Note: Regression coefficients and panel-robust standard errors (in parentheses). Pooled OLS (POLS), fixed-effects (FE), 

fixed-effects group-specific slopes (FEGS), and fixed-effects individual-specific slopes (FEIS) models including a selection 

indicator. Selection indicator for t+1 equals 1 if a person is not contained in the estimation sample in the next year (0 

otherwise). Models further include indicators of grouped survey years (seven categories). Estimation sample excludes the last 

wave of the NLSY79, for which the selection dummy is not defined; persons with fewer than four person-years excluded. 

Reported R-squared is overall R-squared for POLS and within R-squared for FE, FEGS, and FEIS models. 

*p < .05; **p < .01; ***p < .001 (two-sided test). 
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Table S5. Logistic regression model for test of attrition bias in the NLSY79 

                                         b se AME 

Later married (ref. never-married)                                 –.662*** .189 –.138*** 

Ever-married                                 –.741*** .087 –.152*** 

Log hourly wage 2nd quintile (ref. 1st quintile) .152 .120 .029 

3rd quintile                                     .100 .120 .019 

4th quintile                                     .103 .125 .019 

5th quintile                                     –.034 .130 –.006 

Number of children                                  –.015 .144 –.003 

Currently enrolled                                  .042 .093 .008 

Years of education                                   .006 .028 .001 

Tenure (years) .043 .062 .008 

Work experience (years) .031 .063 .006 

Age (years)                                     –.036 .029 –.007 

Birth cohort 1958 (ref. 1957) –.237 .168 –.051 

Cohort 1959                              –.394* .174 –.082* 

Cohort 1960                              –.423* .175 –.088* 

Cohort 1961                              –.528** .184 –.107** 

Cohort 1962                              –.396* .188 –.082* 

Cohort 1963                              –.625** .191 –.124** 

Cohort 1964                              –.561** .195 –.113** 

Male white poor subsample (ref. male white)                                –.310 .213 –.059 

Male black                                –.683*** .181 –.118*** 

Male Hispanic                                .121 .181 .025 

Supplementary male black                               –.351*** .106 –.066*** 

Supplementary male Hispanic                               –.111 .116 –.022 

Military male white                               1.684*** .249 .388*** 

Military male black                               .648 .368 .145 

Military male Hispanic                               –.146 .660 –.029 

Constant                                    .537 .587  

Pseudo R square                          .041 

Number of observations                          3,788 

Source: NLSY79 data. 

Note: Dependent variable is an attrition indicator, equals 1 if person drops out of the NLSY79 before 2012. Table shows logit 

coefficients (b), standard errors (se), and average marginal effects (AME). Cross-sectional sample of men included in sample 

1; 499 men from the supplementary male white poor subsample are excluded because subsample was discontinued after 

1990. 

*p < .05; **p < .01; ***p < .001 (two-sided test). 
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Table S6. The average marital wage premium, test of attrition bias by weighted estimation 

 FE  FEIS 

Married                      .092***  .006 

(ref.: never-married)                          (.009)  (.01) 

Number of children .002  –.019** 

                          (.005)  (.007) 

Currently enrolled                   –.208***  –.125*** 

 (.011)  (.010) 

Years of education .068***  .006 

                          (.004)  (.006) 

Tenure  .116***  .086*** 

(years, divided by 10)                         (.012)  (.014) 

Work experience  .445***   

(years, divided by 10)                                 (.026)   

Experience squared                                 –.059***   

(divided by 100)                          (.009)   

Within R-squared .34  .02 

Number of persons                 3,788  3,788 

Number of person-years           45,878  45,878 

Source: NLSY79 data. 

Note: Regression coefficients and panel-robust standard errors (in parentheses). Fixed-effects (FE) and fixed-effects 

individual-specific slopes (FEIS) models with inverse probability weights used to correct for attrition bias. Attrition weights 

are computed from models shown in Table S5. Individual attrition weights are computed as 
(1−�̂�𝑟)

(1−�̂�𝑢)
 , where �̂�𝑢 are predicted 

probabilities from the (unrestricted) model shown in Table S5, and �̂�𝑟 are predicted probabilities from a (restricted) model 

including indicators for NLSY79 subsamples only. Values of all time-varying covariates are taken from the first person-year 

included in the NLSY79 estimation sample. Models further include indicators of grouped survey years (seven categories). 

499 men from the supplementary male white poor subsample are excluded from the NLSY79 sample because subsample was 

discontinued after 1990. 

*p < .05; **p < .01; ***p < .001 (two-sided test). 

 

 

 

Killewald and Gough (2013) were concerned with sample selectivity due to non-employment and item non-

response on wages. They applied simple longitudinal imputation using wages of men observed one year later (or 

earlier if not observed). Although this is not a perfect test, their results suggest that selectivity does not bias the 

marital premium. However, panel attrition might bias our results if it is systematically related to wages and 

marriage. We ran a test for attrition bias in two steps.  

 

First, we estimated a cross-sectional logit model where we included the first person-year of each man contained 

in our estimation sample. A binary attrition indicator is the dependent variable of the model. We find that 

attrition strongly depends on treatment status, with ever married men, on average, being 15 percentage points 

less likely to drop out than never-married men (see Table S5). However, there is no evidence of an association of 

wages and attrition.  

 

Second, we computed attrition weights and used them to correct for attrition bias in FE and FEIS models. The 

results show only minor changes if we take attrition weights into account, with estimates for the MWP still 

insignificant and close to zero (see Table S6). 

 

Finally, we estimated FE and FEIS models with a less restricted sample than we used in the main analyses. For 

this larger sample, we still required men to be once observed never-married, but we did not apply further 

restrictions on employment, duration of first marriage or marital status. To model the MWP for first marriage 

using this larger sample, we also modified the specification. We introduced additional indicators for divorce and 

remarriage in the models. In addition, we included person-years of self-employed men and we did not restrict the 

sample to men for whom we know they are currently working. Otherwise the same restrictions apply as for the 

sample used in the main analyses. We added dummy variables to the specification that capture wage differences 

of the self-employed and persons who are currently not working. 
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Table S7. The average marital wage premium, test for sample selection bias using less restricted sample 

 

Less restricted sample  Polynomials work 

experience, tenure, 

education  

 At least four years pre-

treatment 

 FE  FEIS  FE  FEIS  FE  FEIS 

Married                      .090***  .028***  .082***  .017  .078***  .014 

(ref.: never-married)                          (.008)  (.009)  (.008)  (.009)  (.010)  (.010) 

Separated / divorced –.002  .004  .000  –.005  –.006  .000 

                          (.013)  (.014)  (.013)  (.015)  (.016)  (.018) 

Widowed                          –.044  .043  –.025  .050  –.016  .022 

                          (.058)  (.056)  (.060)  (.063)  (.085)  (.077) 

Remarried .072***  .019  .070***  .008  .071***  .019 

 (.016)  (.018)  (.016)  (.020)  (.021)  (.025) 

One child (ref.: no child)                         .034***  –.010  .033***  –.006  .033***  –.018 

 (.008)  (.009)  (.008)  (.009)  (.010)  (.010) 

Two children                         .070***  –.018  .067***  –.013  .073***  –.036* 

 (.012)  (.013)  (.012)  (.014)  (.014)  (.015) 

Three or more children                         .049**  –.056**  .049**  –.046*  .046*  –.090*** 

 (.016)  (.019)  (.016)  (.021)  (.019)  (.023) 

Currently enrolled  –.217***  –

.124*** 

 –

.209*** 

 –.109***  –.221***  –.131*** 

 (.009)  (.009)  (.009)  (.009)  (.011)  (.010) 

Currently self-employed –.062***  –.001  –

.067*** 

 .007  –.060**  –.003 

 (.016)  (.016)  (.016)  (.017)  (.019)  (.019) 

Currently working .070***  .030***  .063***  .023**  .067***  .027*** 

 (.007)  (.007)  (.007)  (.007)  (.008)  (.008) 

Years of education .074***  .016***  –

.117*** 

 –.120***  .075***  .017*** 

                          (.004)  (.005)  (.019)  (.030)  (.004)  (.005) 

Years of education ^ 2     .689***  .495***     

(divided by 100)                             (.068)  (.112)     

Tenure (years)                        .012***  .011***  .026***  .018***  .012***  .009*** 

 (.001)  (.001)  (.001)  (.002)  (.001)  (.001) 

Tenure ^ 2     –

.070*** 

 –.053***     

(divided by 100)                             (.006)  (.012)     

Work experience (years) .044***    .044***    .046***   

 (.002)    (.003)    (.003)   

Experience ^ 2  –.059***    –

.093*** 

   –.055***   

(divided by 100)                          (.006)    (.022)    (.006)   

Experience ^ 3     .011**       

(divided by 1000)     (.004)       

R-squared .30  .02  .32  .02  .31  .02 

Number of persons                 4,816  4,816  4,659  4,659  3,606  3,606 

Number of person-years           78,611  78,611  77,983  77,983  60,026  60,026 

Note: Regression coefficients and panel-robust standard errors (in parentheses). Estimation results from fixed-effects (FE) and fixed-

effects individual-specific slopes (FEIS) models. Models further include indicators of grouped survey years (coefficients not shown).  

Less restricted sample: Sample includes person-years after first marriage ends (due to separation, divorce, widowhood); person-years 

observed later than 15 years within first marriage; person-years while self-employed; person-years where respondent is currently not 

working, but hourly wage rate is recorded in the NLSY79 (based on earnings in the last job). Otherwise same selection criteria apply as 

for main estimation sample (see main text and Appendix, Table A1).  

Polynomials experience, tenure, education: Less restricted sample, but men with fewer than five valid person-years excluded. 

Specification additionally includes cubic term for work experience, squared term for tenure, and education.   

At least four years pre-treatment: Less restricted sample, but men with fewer than four valid person-years prior to first marriage 

excluded.   

*p < .05; **p < .01; ***p < .001 (two-sided test). 

 

 

The effect of first marriage returned by the FE model (Table S7, column 1) is similar to the estimate found with 

the main sample (9.4 percent). Further, we do find a significant positive effect of remarriage (7.5 percent), and 

no significant effect of divorce (-0.2 percent). These results seem to support the hypothesis that marriage 

promotes men’s career. However, the findings do not hold with the FEIS model. Using FEIS (column 2), the 

effects of marriage and remarriage are much smaller (2.8 percent and 1.9 percent).  

 

Although the MWP for first marriage is significant in the FEIS model, further tests imply that even this small 

effect is biased upwards. Firstly, the wage profile may not be approximated well by a quadratic function for 

work experience with a large proportion of person-years observed in later stages of the career. Hence, it may be 
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necessary to specify effects of higher polynomials. If we extend the specification along these lines (including a 

cubic term for experience and a squared term for tenure and education), the MWP for first marriage is merely 1.7 

percent and not significant (see column 4).  

 

Secondly, if we use person-years observed over a long period after marriage, it follows that the panels of the 

respective persons are short pre-treatment. (In extreme cases, a person followed for 33 years after marriage in the 

NLSY79 can be observed only once prior to marriage.) Since the large, less restricted sample includes many 

persons with such treatment patterns, we cannot hope to get clean estimates of the marriage premium. Clearly, 

wages and covariates need to be observed pre-treatment to estimate an FE or FEIS model (This was the reason 

why we exclude men who enter the sample married.) However, since the FEIS model implicitly controls for 

individual wage growth that is independent of treatment, it might make sense to require even more than one 

person-year pre-treatment (see Morgan and Winship 2007). Four person-years pre-treatment would then be 

necessary to estimate an intercept and slopes for work experience (linear and squared) for each man. In fact, if 

we apply this restriction, the FEIS estimate of the MWP shrinks to 1.4 percent (and is no longer significant), 

even though later marriages are used for estimation (see column 6). In our main analyses, however, we did not 

want to apply this restriction, since it entails excluding nearly 40 percent of the men who actually are observed to 

marry. Instead, we included all these men, but restricted marriage duration to a maximum of 15 years. This 

restriction is sufficient to get reliable results. From a theoretical point of view, we also see no reason why it 

should take more than 15 years to discern an effect of household specialization on men’s career. Moreover, the 

empirical pattern of the time-path of the effect of marriage contradicts the specialization argument during the 

first 15 years of marriage (see Table S3 and Figure 4). 
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