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A Bayesian model to estimate the cutoff and the clinical utility of a biomarker assay 
 
 
Appendix 
 
 
I. Bias, sample size and prior specification 
 
We explored in a simulation study the performance of the Bayesian method in terms of the (absolute) 

difference of the estimated 𝑐𝑐𝑐𝑐 from the true value of the cutoff for different sample sizes (n=50, 75, 

100, 150, 200, 500). As expected, when the sample size increases, the bias is shrinking towards zero 

as we can see in Figure A.1. 

.  
Figure A.1: Boxplots of the absolute difference between the estimate and the true value of the cutoff 𝑐𝑐𝑐𝑐 over 10 000 simulation 
runs for Scenario 1 for varying samples sizes (n=50, 75, 100, 150, 200, 500). Results shown for the Bayesian method with a 
uniform prior. The posterior mean was used as an estimate for the cutoff. 
 

In Table A.1 and A.2 we present simulation results concerning the predictive values for a sample size of 

𝑛𝑛 = 50. These results are complementary for the simulations described in section 3.2. We report the Bias, 

Coverage and interval width for scenarios 1-4 and for all methods. For the Bayesian method, even with a 

small sample size the bias of the parameters (on absolute scale) is always less than 4% on average. For 

the PSI and ML method, the bias of the estimates is small, whereas the coverage does not always reach 

the nominal level and the interval widths are always slightly bigger than the Bayesian method. 
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      𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐 Bias 

Methods Bayesian PSI MLE 

Prior UP IPN IPP MixN MixP 

Scenario 1  
3x10-2 

 

-3x10-2 

 
3x10-2 

 

-4x10-2 

 
3x10-2 

 
3x10-2 

 
3x10-2 

 

-3x10-2 

 
7x10-3 

 

-8x10-3 

 
4x10-2 

 

9x10-2 

 
4x10-2 

 

8x10-2 

𝒑𝒑𝟏𝟏 
 
𝒑𝒑𝟐𝟐 

  Scenario 2  
3x10-2 

 
-4x10-2 

 

 
2x10-2 

 
-4x10-2 

 

 
2x10-2 

 
-3x10-2 

 

 
3x10-2 

 

-3x10-2 

 
2x10-2 

 

-3x10-2 

 
-3x10-2 

 
-4x10-3 

 

 
6x10-2 

 
5x10-2 

𝒑𝒑𝟏𝟏 
 
𝒑𝒑𝟐𝟐 

  Scenario 3  
2x10-2 

 
-5x10-2 

 
2x10-3 

 
-1x10-1 

 
2x10-2 

 
-5x10-2 

 
1x10-2 

 

-6x10-2 

 

 
2x10-2 

 

-5x10-2 

 
-7x10-3 

 
8x10-2 

 
6x10-2 

 

1x10-1 

𝒑𝒑𝟏𝟏 
 
𝒑𝒑𝟐𝟐 

Scenario 4  
4x10-2 

 

-2x10-2 

 
4x10-2 

 

-2x10-2 

 
4x10-2 

 
-2x10-2 

 
4x10-2 

 
-2x10-2 

       
 4x10-2 

 

-2x10-2 

 
3x10-3 

 
6x10-3 

 
1x10-1 

 

5x10-2 

𝒑𝒑𝟏𝟏 
  
𝒑𝒑𝟐𝟐 

Table A.1: Mean bias of the estimate of the predictive values 𝑐𝑐1  and 𝑐𝑐2  over 10 000 simulation runs for the Bayesian method, the MLE and PSI 
approach and scenarios 1-4 and for n=50. 

 
 
 

Table A.2: Average coverage and width of the credible/confidence interval for the estimates of the predictive values 𝑐𝑐1 and 𝑐𝑐2  over 10 000 
simulation runs for scenarios 1-4 for n=50. The credible intervals are computed by the quantile method. Bootstrapping was used to calculate the 
confidence interval for the PSI method and the profile CI are presented for the MLE method. 
 

𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐 Coverage Interval width 

Methods Bayesian PSI 

 

MLE Bayesian PSI MLE 

Prior 
 

 UP IPN IPP MixN MixP UP IPN IPP MixN MixP 

Scenario 1  
0.956 

 
0.975 

 
0.969 

 
0.949 

 

 
0.957 

 
0.951 

 

    
0.961 
 
0.969 
 

   
0.955 

0.969 

        
0. 986 

0.772 

    
0.914 

0.976 

 
0.235 
 
0.365 
 

 
0.230 

 
0.369 

 

 
0.223 

 
0.352 

     
0.232 
 
0.364 

   
0.231 

0.359 

          
0. 287 

0.292 

     
0.217 

0.372 

𝒑𝒑𝟏𝟏 
 
𝒑𝒑𝟐𝟐 

Scenario 2  
0.952 

 
0.971 

 
0.968 

 
0.947 

 
0.951 

 
0.951 

    
0.952 
 
0.966 

   
0.949 
 
0.964 

   
0.943 

0.957 

   
0.882 

0.969 

 
0.308 
 
0.258 
 

 
0.309 

 
0.269 

 

 
0.298 

 
0.256 

 
0.306 
 
0.258 

 
0.303 
 
0.256 

    
0.333 

0.300 

     
0.292 

0.290 

𝒑𝒑𝟏𝟏 
 
𝒑𝒑𝟐𝟐 

Scenario 3  
0.960 

 
0.982 

 

 
0.971 

 
0.885 

 

 
0.946 

 
0.965 

    
0.962 
 
0.968 

   
0.951 
 
0.981 

   
0.969 

0.814 

    
0.897 

0.902 

  
0.309 
 
0.416 

 
0.314 

 
0.427 

 
0.282 

 
0.368 

     
0.302 
 
0.411 

   
0.294 
 
0.390 

    
0.395 

0.356 

     
0.291 

0.443 

𝒑𝒑𝟏𝟏 
 
𝒑𝒑𝟐𝟐 

Scenario 4  
 0.956 

 
0.950 

 

 
0.927 

 
0.949 

 
0.956 

 
0.951 

     
0.954 
 
0.951 
  

 
0.960 
 
0.955 

   
0.954 

0.949 

   
0.991 

0.987 

 
0.243 
 
0.315 
 

 
0.243 

 
0.317 

 
0.242 

 
0.314 

      
0.248 
 
0.320 

 

   
0.244 
 
0.317 

    
0.279 

0.407 

     
0.443 

0.487 

𝒑𝒑𝟏𝟏 
 
𝒑𝒑𝟐𝟐 
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In Figure A.2 we see the distribution of the absolute difference of the estimated 𝑐𝑐𝑐𝑐 from the true 

value of the cutoff over the 10 000 simulation runs, for the Bayesian method when we consider 

different priors. The results are presented for data generated as in Scenario 1 with a sample size of 

n=50. Even with a small sample size the bias is always smaller than 10% on average. When the prior 

is informative precise then we achieve the smallest bias, whereas when we consider a robust mixture 

of precise and uniform prior the bias is slightly higher but still very small. 

 

 
Figure A.2: Boxplots for the absolute difference between the estimate 𝑐𝑐𝑐𝑐� and the true value of 𝑐𝑐𝑐𝑐 estimated with the Bayesian 
model over 10 000 simulation runs for Scenario 1. In this simulation we used n=50 samples for the case of (from left to right) 
an Informative Prior Non-precise (IPN), an Informative Prior Precise (IPP), a Mixture Prior Non-precise (UP+IPN), a Mixture 
Prior Precise (UP+IPP) and a Uniform Prior (UP).  
 

II. Comparison with other methods 
 

We considered the simulated data from scenario 2 (generating model step function) and scenario 5 

(generating model logistic function) as examples to show the results regarding the fit of the logistic 

with the choice of 𝑐𝑐 = 0.5 and the method that estimates 𝑐𝑐 as the value minimizes the Brier score. 

Results are shown in the Figure A.3 below, where we see that the estimated parameters by the 

logistic model with the choice of 𝑐𝑐 = 0.5 are more biases compared with the Bayesian approach. For 

scenario 5, the posterior means by the proposed approach are similar to the method that estimates p 
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as the value that minimizes the Brier score but the latter approach results in much higher variability. 

However, results differ from the method that used the probability cutoff of 𝑐𝑐 = 0.5, where we see 

that underestimate the true parameters. 

 

 

Figure A.3: Boxplots of the estimated parameters 𝑐𝑐𝑐𝑐, 𝑐𝑐1, 𝑐𝑐2 (left , middle and right plots respectively) by the Bayesian 
method, the Logistic regression with a cutoff at 𝑐𝑐 = 0.5 and by minimizing the Brier score. Results shown for 10,000 
simulation runs for scenario 2 where the generating model is a step function (upper panel) and scenario 5 where the generating 
model is logistic (lower panel). The black horizontal lines correspond to the true values of the parameters. 
 

III. Conditional Kullback-Leibler divergence between the theoretical and fitted model 

A. Estimation of the predictive values 

 

Let’s assume that the data generating function of the true model is a logistic function, i.e. 

𝑌𝑌|𝑋𝑋~𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑐𝑐), with link function 𝐵𝐵𝐵𝐵𝑙𝑙𝐵𝐵𝑙𝑙(𝑐𝑐) = 𝑋𝑋𝑋𝑋, 𝑐𝑐(𝑥𝑥) = 𝑒𝑒𝑋𝑋𝑋𝑋

1+ 𝑒𝑒𝑋𝑋𝑋𝑋
  and joint probability distribution 

function 𝑙𝑙(𝑥𝑥 ,𝑦𝑦). The conditional distribution of 𝑌𝑌|𝑋𝑋 is 𝐺𝐺 and 𝑙𝑙(𝑦𝑦|𝑥𝑥) the conditional density. Let us now 

consider that the fitted model assumes a step function for the probability of response with 

𝑌𝑌|𝑋𝑋~𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑞𝑞), 𝑞𝑞(𝑥𝑥) =  �
  𝑞𝑞1, 𝐵𝐵𝑖𝑖 𝑥𝑥 ≤ 𝑐𝑐𝑐𝑐 

 
𝑞𝑞2, 𝐵𝐵𝑖𝑖 𝑥𝑥 > 𝑐𝑐𝑐𝑐

and corresponding conditional probability distribution 𝐹𝐹. 



5 
 

The joint probability distribution function is 𝑖𝑖(𝑥𝑥 ,𝑦𝑦) and 𝑖𝑖(𝑦𝑦|𝑥𝑥) the conditional density. We would like to 

show that the estimates of the parameters in the step model are the ones that minimize the Kullbaclk-

Leibler (KL) divergence between the two probability distributions F and G. That is, the expectation of the 

log difference between the conditional probability of data in the original distribution with the approximate 

distribution.  

 

The conditional Kullbaclk-Leibler divergence between the two probability distributions F and G is 

defined as  

𝐷𝐷𝐾𝐾𝐾𝐾(𝐺𝐺||𝐹𝐹) =  � 𝑙𝑙(𝑥𝑥)
𝑋𝑋∈𝐴𝐴

� 𝑙𝑙(𝑦𝑦|𝑥𝑥)𝐵𝐵𝐵𝐵𝑙𝑙
𝑙𝑙(𝑦𝑦|𝑥𝑥)
𝑖𝑖(𝑦𝑦|𝑥𝑥)𝑌𝑌∈𝐵𝐵

 𝑑𝑑𝑦𝑦 𝑑𝑑𝑥𝑥 

where 𝑙𝑙(𝑥𝑥) is the pdf of 𝑋𝑋, where 𝑋𝑋 ∈ 𝐴𝐴 and 𝑌𝑌 ∈ 𝐵𝐵 . 

 

We first calculate the inner integral ∫ 𝑙𝑙(𝑦𝑦|𝑥𝑥)𝐵𝐵𝐵𝐵𝑙𝑙𝑔𝑔�𝑦𝑦�𝑥𝑥�
𝑓𝑓�𝑦𝑦�𝑥𝑥�𝑌𝑌∈𝐵𝐵  𝑑𝑑𝑦𝑦 =  

𝐸𝐸𝐺𝐺 �𝑦𝑦 log
𝑐𝑐(𝑥𝑥)
𝑞𝑞(𝑥𝑥) + (1 −𝑦𝑦) log

1 −𝑐𝑐(𝑥𝑥)
1 −𝑞𝑞(𝑥𝑥)� ==

⎩
⎪
⎨

⎪
⎧𝐸𝐸𝐺𝐺 �𝑦𝑦 log

𝑐𝑐(𝑥𝑥)
𝑞𝑞1

+ (1 −𝑦𝑦) log
1−𝑐𝑐(𝑥𝑥)

1− 𝑞𝑞1
� ,   𝑖𝑖𝐵𝐵𝐵𝐵 𝑋𝑋 ≤ 𝑐𝑐𝑐𝑐

𝐸𝐸𝐺𝐺 �𝑦𝑦 log
𝑐𝑐(𝑥𝑥)
𝑞𝑞2

+ (1 −𝑦𝑦) log
1−𝑐𝑐(𝑥𝑥)

1−𝑞𝑞2
� ,   𝑖𝑖𝐵𝐵𝐵𝐵 𝑋𝑋 > 𝑐𝑐𝑐𝑐

 

  =  

⎩
⎪
⎨

⎪
⎧𝑐𝑐(𝑥𝑥) log𝑝𝑝(𝑥𝑥)

𝑞𝑞1
+ �1−𝑐𝑐(𝑥𝑥)� log1−𝑝𝑝(𝑥𝑥)

1−𝑞𝑞1
,   𝑖𝑖𝐵𝐵𝐵𝐵  𝑋𝑋 ≤ 𝑐𝑐𝑐𝑐       (𝐼𝐼)

𝑐𝑐(𝑥𝑥) log 𝑝𝑝(𝑥𝑥)
𝑞𝑞2

+ �1−𝑐𝑐(𝑥𝑥)� log 1−𝑝𝑝(𝑥𝑥)
1−𝑞𝑞2

, 𝑖𝑖𝐵𝐵𝐵𝐵  𝑐𝑐𝑐𝑐 < 𝑋𝑋   (𝐼𝐼𝐼𝐼)
 

 

 

Need to minimize the 𝐷𝐷𝐾𝐾𝐾𝐾(𝑙𝑙(𝑦𝑦|𝑥𝑥)||𝑖𝑖(𝑦𝑦|𝑥𝑥)) over 𝑋𝑋, assuming that 𝑋𝑋 has pdf 𝑙𝑙(𝑥𝑥) and 𝑋𝑋 ∈ [0,𝑐𝑐𝑐𝑐] ∪

(𝑐𝑐𝑐𝑐,∞]. For a given 𝑐𝑐𝑐𝑐, we estimate 𝑞𝑞1 and 𝑞𝑞2 by minimizing: 
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 𝐷𝐷𝐾𝐾𝐾𝐾
(𝐼𝐼)(𝑙𝑙(𝑦𝑦|𝑥𝑥)||𝑖𝑖(𝑦𝑦|𝑥𝑥)) = ∫ 𝑙𝑙(𝑥𝑥)  �𝑐𝑐(𝑥𝑥) log𝑝𝑝(𝑥𝑥)

𝑞𝑞1
+ �1−𝑐𝑐(𝑥𝑥)� log1−𝑝𝑝(𝑥𝑥)

1−𝑞𝑞1
�  𝑑𝑑𝑥𝑥𝑐𝑐𝑝𝑝

0    and 

𝐷𝐷𝐾𝐾𝐾𝐾
(𝐼𝐼𝐼𝐼)(𝑙𝑙(𝑦𝑦|𝑥𝑥)||𝑖𝑖(𝑦𝑦|𝑥𝑥)) = ∫ 𝑙𝑙(𝑥𝑥) � 𝑐𝑐(𝑥𝑥) log𝑝𝑝(𝑥𝑥)

𝑞𝑞1
+ �1−𝑐𝑐(𝑥𝑥)� log1−𝑝𝑝(𝑥𝑥)

1−𝑞𝑞1
�𝑑𝑑𝑥𝑥∞

𝑐𝑐𝑝𝑝   respectively. 

 

𝐷𝐷𝐾𝐾𝐾𝐾
(𝐼𝐼)((𝑙𝑙(𝑦𝑦|𝑥𝑥)||𝑖𝑖(𝑦𝑦|𝑥𝑥)) =  � 𝑙𝑙(𝑥𝑥) �𝑐𝑐(𝑥𝑥) log

𝑐𝑐(𝑥𝑥)
𝑞𝑞1

+ �1−𝑐𝑐(𝑥𝑥)� log
1−𝑐𝑐(𝑥𝑥)

1− 𝑞𝑞1
�  𝑑𝑑𝑥𝑥

𝑐𝑐𝑝𝑝

0
 

                                     = ∫ 𝑙𝑙(𝑥𝑥)𝑐𝑐(𝑥𝑥) log𝑐𝑐(𝑥𝑥) 𝑑𝑑𝑥𝑥 − ∫ 𝑙𝑙(𝑥𝑥)𝑐𝑐(𝑥𝑥) log𝑞𝑞1 𝑑𝑑𝑥𝑥+𝑐𝑐𝑝𝑝
0

𝑐𝑐𝑝𝑝
0  

                             ∫ 𝑙𝑙(𝑥𝑥)(1 −𝑐𝑐(𝑥𝑥)) log�1−𝑐𝑐(𝑥𝑥)�𝑑𝑑𝑥𝑥 −  ∫ 𝑙𝑙(𝑥𝑥)(1−𝑐𝑐(𝑥𝑥)) log(1−𝑞𝑞1) 𝑑𝑑𝑥𝑥𝑐𝑐𝑝𝑝
0

𝑐𝑐𝑝𝑝
0  

   

Calculate    𝑑𝑑
𝑑𝑑𝑞𝑞1

  𝐷𝐷𝐾𝐾𝐾𝐾
(𝐼𝐼)(𝑙𝑙(𝑦𝑦|𝑥𝑥)||𝑖𝑖(𝑦𝑦|𝑥𝑥)) = − 1

𝑞𝑞1
 ∫ 𝑙𝑙(𝑥𝑥)𝑐𝑐(𝑥𝑥)𝑑𝑑𝑥𝑥 𝑐𝑐𝑝𝑝
0 + 1

1−𝑞𝑞1
 ∫ 𝑙𝑙(𝑥𝑥)�1−𝑐𝑐(𝑥𝑥)� 𝑑𝑑𝑥𝑥 𝑐𝑐𝑝𝑝
0   

set equal to zero and solve with respect to 𝑞𝑞1 we then obtain  

𝑞𝑞1 =
∫ 𝑙𝑙(𝑥𝑥)𝑐𝑐(𝑥𝑥) 𝑑𝑑𝑥𝑥𝑐𝑐𝑝𝑝
0

∫ 𝑙𝑙(𝑥𝑥) 𝑑𝑑𝑥𝑥𝑐𝑐𝑝𝑝
0

 

Following the same calculations for 𝐷𝐷𝐾𝐾𝐾𝐾
(𝐼𝐼𝐼𝐼)(𝑙𝑙(𝑦𝑦|𝑥𝑥)||𝑖𝑖(𝑦𝑦|𝑥𝑥)) and solve with respect to 𝑞𝑞2 we get  

𝑞𝑞2 =
∫ 𝑙𝑙(𝑥𝑥)𝑐𝑐(𝑥𝑥) 𝑑𝑑𝑥𝑥∞
𝑐𝑐𝑝𝑝

∫ 𝑙𝑙(𝑥𝑥) 𝑑𝑑𝑥𝑥∞
𝑐𝑐𝑝𝑝

 

B. Estimation of the cutoff 

The estimation of the cut-off 𝑐𝑐𝑐𝑐, is not straightforward and can be done by using numerical minimization. 

To do this we need to repeat the calculations above for all possible values of 𝑐𝑐𝑐𝑐 and to find the step model 

that minimizes the 𝐷𝐷𝐾𝐾𝐾𝐾(𝑙𝑙(𝑦𝑦|𝑥𝑥)||𝑖𝑖(𝑦𝑦|𝑥𝑥)). 

 

IV. R and SAS code 

The R code is not included here due to the extent of the code and the R scripts are available upon request 

from the corresponding author. The following is the SAS code that was used for fitting the Bayesian 
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model for Scenario 1 using a mixture prior with imprecise part (MixN). The code can be modified to 

include other prior specifications. 

 
PROC MCMC 
     data=Data  outpost=Dataoutput 
          nbi=10000 
          nmc=30000 
          thin=50 
        seed=seed 
      monitor=( p1 p2 cp I w); 
 by dataID; # this is used for the simulated data; otherwise is omitted if a single dataset is used. 
 PARMS cp1 cp2 p1 p2 w I;  
   prior cp1 ~ uniform(1,15); 
   or cp2 ~ normal(5,sd=1); 
   hyperprior I~ beta(1,1); 

or w ~ binary(I); 
   cp = w*cp1 + (1-w)*cp2; 
   prior p1 ~ uniform(0, 1); 
   prior p2 ~ uniform(p1, 1);  
   p= (X<=cp)*p1 + (X>cp)*p2; 
  model y~ binary(p); 
 RUN; 
 
 


