Supplementary Information

Validating a European-scale charcoal calibration dataset Carole Adolf, Fabienne Doyon, Fabian Klimmek, Willy Tinner

Appendix 1: Model of cylinder sediment traps used in the study of Adolf et al. (2018).

Appendix 1: Cylinder sediment trap. Figure modified after (Hakanson & Jansson, 1983)

Appendix 2: Data-Tables per lake

Tables showing sediment sample information along with the matching satellite-derived fire parameters for radii of 40 km around the lakes (FN and FRP) and 180 km around the lakes (BA). FN: Fire number, FRP: Fire radiative power, BA: burned area. FN and FRP derive from the Global Monthly Fire Location Product (MCD14ML, collection 5.1, Giglio, Descloitres, Justice, & Kaufman, 2003; Justice, Giglio, Boschetti, Roy, & Csiszar, 2006; Justice et al., 2002; Kaufman et al., 2003). For burned area, we used the shapefile version of the MODIS burned area product (MCD45monthly, collection 5.1, provided by the University of Maryland, D. Roy & Boschetti, 2008; D. P. Roy, Jin, Lewis, & Justice, 2005; D. P. Roy, Lewis, & Justice, 2002).

Sarsjön	Charcoal	Depth	Volume	Concentration sample	Influx	FN	FRP	BA
	type	[cm]	[cm ³]	(vol not stand.)	[part. cm ⁻² yr ⁻¹]	[# yr ⁻¹]	[Wm ⁻²]	[km ²]
				[part. cm ⁻³]				
SAR1	MIC	0.3	0.1	2116.5	2751.5	0.1	0.1	0.1
SAR2	MIC	0.45	0.15	3878.7	3878.7	3	347.8	0.5
SAR3	MIC	0.52	0.2	7135.9	2497.6	2	22.2	1.0
SAR4	MIC	0.7	0.2	6414.8	5773.3	2	48.3	0.5
SAR5	MIC	0.82	0.15	6583.6	5266.9	1	13.7	0.1
SAR6	MIC	0.95	0.2	4830.6	3139.9	0.1	0.1	0.4
SAR7	MIC	1.05	0.2	8723.6	4361.8	0.1	0.1	0.4
SAR8	MIC	1.2	0.5	10981.0	3294.3	2	26.9	0.1
SAR9	MIC	1.35	0.2	5333.2	3999.9	7	563.5	0.2
SAR10	MIC	1.45	0.3	5541.9	1847.3	2	119	0.1
SAR11	MIC	1.6	0.6	11727.0	2931.8	0.1	0.1	0.8
SAR12	MIC	1.7	0.3	6765.2	2255.1	7	906.6	0.7

Appendix 2a: Sarsjön

Jezioro	Charcoal	Depth	Volume	Concentration	Influx	FN	FRP	BA
Gościąż	type	[cm]	[cm ³]	[part. cm ⁻³]	[part. cm ⁻² yr ⁻¹]	[# yr ⁻¹]	[Wm ⁻²]	[km ²]
GOS1-5	MIC	2	1.25	33848.2	5469.6	0.1	0.1	7.7
GOS1-5	MIC	2	1.25	33848.2	5469.6	4	181.3	3.1
GOS1-5	MIC	2	1.25	33848.2	5469.6	1	17.6	0.7
GOS1-5	MIC	2	1.25	33848.2	5469.6	1	15.4	0.7
GOS1-5	MIC	2	1.25	33848.2	5469.6	3	72.1	0.7
GOS6	MIC	4.25	2.7	56847.6	18025.5	0.1	0.1	1.1
GOS7	MIC	5.75	1.5	44059.0	30567.9	2	177.3	3.1
GOS8	MIC	7.25	2	41638.2	21666.2	11	436.3	5.3
GOS9	MIC	8.75	2.75	78874.6	29848.7	3	70.3	1.0
GOS1-5	MAC	2	1.5	0	0	0.1	0.1	7.7
GOS1-5	MAC	2	1.5	0	0	4	181.3	3.1
GOS1-5	MAC	2	1.5	0	0	1	17.6	0.7
GOS1-5	MAC	2	1.5	0	0	1	15.4	0.7
GOS1-5	MAC	2	1.5	0	0	3	72.1	0.7
GOS6	MAC	4.25	4	7.00	5.99	0.1	0.1	1.1
GOS7	MAC	5.75	4	4.25	4.42	2	177.3	3.1
GOS8	MAC	7.25	4	5.00	5.20	11	436.3	5.3
GOS9	MAC	8.75	4	6.00	6.24	3	70.3	1.0

Appendix 2b: Jezioro Gościąż

Lago Piccolo	Charcoal	Depth	Volume	Concentration	Influx	FN	FRP	BA
d'Avigliana	type	[cm]	$[cm^3]$	[part. cm ⁻³]	[part. cm ⁻² yr ⁻¹]	[# yr ⁻¹]	[Wm ⁻²]	[km ²]
AVI1	MIC	0.7	0.5	5649.1	4330.8	19	221.4	2.2
AVI2	MIC	1.2	1.2	15590.7	6757.2	39	635.8	3.1
AVI3	MIC	1.5	0.6	3976.8	2290.4	24	385	0.7
AVI4	MIC	1.9	1	9149.1	3609.1	30	495.1	0.5
AVI5	MIC	2.3	0.9	3748.0	1560.6	24	356.4	32.3
AVI6	MIC	2.6	0.6	6108.3	2867.8	47	1490.3	25.5
AVI7	MIC	2.9	0.5	12804.3	6786.7	22	373.4	7.1
AVI8	MIC	3.1	0.8	22137.6	7250.3	5	121.5	1.7
AVI9	MIC	3.4	0.9	11727.0	3684.1	21	434.4	5.7
AVI10	MIC	3.7	0.7	9149.1	3336.2	27	1336	34.0
AVI11	MIC	3.9	0.9	17247.0	5418.2	11	147.8	19.9
AVI12	MIC	4.3	2.1	25944.2	4799.3	5	66.3	26.5
AVI1	MAC	0.7	1	1	0.38	19	221.4	2.2
AVI2	MAC	1.2	1	1	0.52	39	635.8	3.1
AVI3	MAC	1.5	1	0	0	24	385	0.7
AVI4	MAC	1.9	1	0	0	30	495.1	0.5
AVI5	MAC	2.3	1	11	4.12	24	356.4	32.3
AVI6	MAC	2.6	1	10	2.82	47	1490.3	25.5
AVI7	MAC	2.9	1	11	2.92	22	373.4	7.1
AVI8	MAC	3.1	1	6	1.57	5	121.5	1.7
AVI9	MAC	3.4	1	13	3.68	21	434.4	5.7
AVI10	MAC	3.7	1	3	0.77	27	1336	34.0
AVI11	MAC	3.9	1	4	1.13	11	147.8	19.9
AVI12	MAC	4.3	1	2	0.78	5	66.3	26.5

Appendix 2c: Lago Piccolo d'Avigliana

Lago Grande	Charcoal	Depth	Volume	Concentration	Influx	FN	FRP	BA
di Monticchio	type	[cm]	[cm ³]	[part. cm ⁻³]	[part. cm ⁻² yr ⁻¹]	[# yr ⁻¹]	[Wm ⁻²]	[km ²]
MONT1	MIC	3.5	0.13	11877.18	39590.6	102	2825.7	996.7
MONT2	MIC	4.4	0.5	14466.12	26039.0	227	6562.7	853.4
MONT3	MIC	5.6	1.6	22352.63	16764.5	124	3835.6	635.6
MONT4	MIC	6.6	1.7	48544.8	28555.8	38	1046.2	300.3
MONT5	MIC	7.5	2.25	56802.67	22721.1	138	4416	1853.1
MONT6	MIC	8.5	0.7	22707.43	32439.2	284	11839.3	1530.7
MONT7	MIC	8.9	1.5	40636.65	10836.4	72	1587.7	259.9
MONT8	MIC	9.5	2.6	60474.46	13955.6	65	3218.2	836.6
MONT9	MIC	10	1.2	22224.19	9260.1	195	5570.4	750.5
MONT10	MIC	10.3	1	23256.54	6977.0	114	3535.4	817.5
MONT11	MIC	10.6	2.1	39445.09	5635.0	89	3414.6	384.6
MONT12	MIC	11.6	2.5	24126.34	9650.5	198	5957.4	1190.9
MONT1	MAC	3.5	1	25	25	102	2825.7	996.7
MONT2	MAC	4.4	1	22	19.8	227	6562.7	853.4
MONT3	MAC	5.6	2	25.5	30.6	124	3835.6	635.6
MONT4	MAC	6.6	2	20	20	38	1046.2	300.3
MONT5	MAC	7.5	2	13	11.7	138	4416	1853.1
MONT6	MAC	8.5	2	31	31	284	11839.3	1530.7
MONT7	MAC	8.9	1	40	16	72	1587.7	259.9
MONT8	MAC	9.5	2	32.5	19.5	65	3218.2	836.6
MONT9	MAC	10	2	6	3	195	5570.4	750.5
MONT10	MAC	10.3	1	19	5.7	114	3535.4	817.5
MONT11	MAC	10.6	2	42	12.6	89	3414.6	384.6
MONT12	MAC	11.6	2	4.5	4.5	198	5957.4	1190.9

Appendix 2d: Lago Grande di Monticchio

Appendix 3: Chronology details per lake

Data for the isotope measurements, which in the cases of all but Jezioro Gosciaz were used only as supportive for the varve counting chronology. In the case of Sarsjön, light and thick layers in the core were associated to major floods in the regions (MSB, 2012).

Jezioro	Depth	CRS-Model	CRS-	Unsupported	¹³⁷ Cs
Gościąż	[cm]	inferred	Model	²¹⁰ Pb Activity	Activity
(GOS)		calendar	inferred	[Bq kg ⁻¹]	$[Bq kg^{-1}]$
		year	Age [yrs]		
	0.5	2011	2 ± 0.2	450 ± 263	-5 ± 76
	1.5	2009	4 ± 1.3	335 ± 335	-7 ± 9
	2.5	2008	5 ± 1.4	217 ± 42	9 ± 6
	10	2004	10 ± 1.4	151 ± 13	11 ± 1
	17	1998	15 ± 1.5	169 ± 19	7 ± 1
	24	1990	23 ± 1.6	147 ± 12	13 ± 1
	26.5	1988	25 ± 1.6	167 ± 24	15 ± 4

Appendix 3a: Jezioro Gosciaz chronology data

Lago Piccolo	Depth	CRS-Model	CRS-Model	Unsupported	¹³⁷ Cs
d'Avigliana	[cm]	inferred	inferred Age	²¹⁰ Pb Activity	Activity
(AVI)		calendar	[yrs]	$[Bq kg^{-1}]$	$[Bq kg^{-1}]$
		year	-		
	0.5	2010	3 ± 0.5	249 ± 42	61 ± 11
	8.5	1984	29 ± 2.4	165 ± 14	80 ± 5
	12.5	1973	40 ± 2.3	93 ± 9	48 ± 4
	16.5	1961	52 ± 3.0	72 ± 10	43 ± 2
	20.5	1946	68 ± 4	64 ± 7	4 ± 2
	25.5	1907	107 ± 11.2	26 ± 7	-

Appendix 3b: Lago Piccolo d'Avigliana chronology data

Lago Grande	Depth [cm]	CRS-	CRS-	Unsupported	¹³⁷ Cs
di	_	Model	Model	²¹⁰ Pb Activity	Activity
Monticchio		inferred	inferred	[Bq kg ⁻¹]	$[Bq kg^{-1}]$
(MONT)		calendar	Age [yrs]		
		year			
	2.3	2012	2 ± 0.2	329 ± 32	35 ± 5
	6.5	2007	7 ± 0.3	325 ± 47	41 ± 7
	9	2005	8 ± 0.8	355 ± 35	32 ± 3
	12	1999	15 ± 0.9	401 ± 46	31 ± 2
	17.5	1992	21 ± 1.1	288 ± 29	44 ± 2
	22.5	1987	26 ± 1.1	202 ± 19	61 ± 3
	27.5	1981	32 ± 1.1	207 ± 16	45 ± 2

Appendix 3c: Lago Grande di Monticchio chronology data

Sarsjön	Depth [cm]	Varve-inferred	Varve-inferred	Regional, large
(SAR)		calendar year	age [yrs]	flood events
	0.3	2013 ± 1.33	1 ± 1.33	
	0.45	2012 ± 1.33	2 ± 1.33	
	0.52	2011 ± 1.33	3 ± 1.33	
	0.7	2010 ± 1.33	4 ± 1.33	
	0.82	2009 ± 1.33	5 ± 1.33	
	0.95	2008 ± 1.33	6 ± 1.33	
	1.05	2007 ± 1.33	7 ± 1.33	
	1.2	2006 ± 1.33	8 ± 1.33	
	1.35	2005 ± 1.33	9 ± 1.33	
	1.45	2004 ± 1.33	10 ± 1.33	
	1.6	2003 ± 1.33	11 ± 1.33	
	1.7	2002 ± 1.33	12 ± 1.33	
	2.4	1996 ± 1.33	17 ± 1.33	Vännäsby and Vindeln (1995)
	4.05	1981 ± 1.33	32 ± 1.33	Umea (1986)
	4.3	1979 ± 1.33	34 ± 1.33	
	5	1971 ± 1.33	42 ± 1.33	Stornoorrfors (1971)
	6.4	1958 ± 1.33	55 ± 1.33	
	8.45	1939 ± 1.33	74 ± 1.33	Vännasby (1938)
	9.1	1935 ± 1.33	78 ± 1.33	
	10.5	1926 ± 1.33	87 ± 1.33	
	10.6	1925 ± 1.33	88 ± 1.33	
	11.2	1921 ± 1.33	92 ± 1.33	

Appendix 2d: Sarjön chronology data

Appendix 4: Cross-correlations at fixed radii of 40 and 180 km

Graphs are ordered by charcoal type (rows) and satellite-derived fire regime parameter (columns).

Appendix 4: FN: Fire number, FRP: Fire radiative power, BA: burned area, SAR: Sarsjön, GOS: Jezioro Gosciaz, AVI: Lago Piccolo d'Avigliana, MONT: Lago Grande di Monticchio, MIC: microscopic charcoal, MAC: macroscopic charcoal.

Appendix 5: Correlation coefficients for microscopic charcoal (MIC) and macroscopic charcoal (MAC) and satellite-derived fire parameters (fire number (FN), fire radiative power (FRP), burned area (BA)) in relation to increasing distance. Grey lines indicate source areas based on Adolf et al. (2018).

Appendix 5a: Correlations coefficients for Lake Sarsjön and Jezioro Gosciaz

Appendix 5b: Correlation coefficients for Lago Piccolo d'Avigliana and Lago Grande di Monticchio

FIRE PARAMETER		SARSJÖN		JEZIORO GOŚCIĄŻ		LAGO PICCOLO D'AVIGLIANA		LAGO GRANDE DI MONTICCHIO	
		Pred	Obs	Pred	Obs	Pred	Obs	Pred	Obs
FN	Mean MIC	3.7	2.2	10.3	2.9	4.42	22.8	12.8	137.2
	Mean MAC	-	-	42.4		16.3		1,123.9	
FRP [W/M ²]	Mean MIC	62.2	170.7	229.6	107.8	77.0	505.3	297.4	4,484.1
	Mean MAC	-	-	2,372.8		569.1		248,483.4	
BA [KM ²]	Mean MAC	-	-	328.1	2.6	102.6	13.3	15,959.2	867.5

Appendix 6: Comparison between mean predicted and observed values per site and per fire parameter (untransformed data).

Appendix 6: Pred: Predicted values, Obs: Observed values, FN: Fire number, FRP: Fire radiative power [W m⁻²], BA: Burned area [km²], MIC: Microscopic charcoal, MAC: Macroscopic charcoal.

Bibliography Supplementary Information

- Adolf, C., Wunderle, S., Colombaroli, D., Weber, H., Gobet, E., Heiri, O., ... Tinner, W. (2018). The sedimentary and remote-sensing reflection of biomass burning in Europe. *Global Ecology and Biogeography*, 27(2), 199–212. http://doi.org/10.1111/geb.12682
- Giglio, L., Descloitres, J., Justice, C. O., & Kaufman, Y. J. (2003). An enhanced contextual fire detection algorithm for MODIS. *Remote Sensing of Environment*, 87(2–3), 273–282. http://doi.org/10.1016/S0034-4257(03)00184-6
- Hakanson, L., & Jansson, M. (1983). *Principles of Lake Sedimentology*. Heidelberg: Springer Verlag.
- Justice, C., Giglio, L., Boschetti, L., Roy, D. P., & Csiszar, I. (2006). Modis fire products, (October), 1–34.
- Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D. P., ... Kaufman, Y. J. (2002). The MODIS fire products. *Remote Sensing of Environment*, 83(1–2), 244– 262. http://doi.org/10.1016/S0034-4257(02)00076-7
- Kaufman, Y. J., Ichoku, C., Giglio, L., Korontzi, S., Chu, D. a., Hao, W. M., ... Justice, C. O. (2003). Fire and smoke observed from the Earth Observing System MODIS instrument-products, validation, and operational use. *International Journal of Remote Sensing*, 24(8), 1765–1781. http://doi.org/10.1080/01431160210144741
- MSB. (2012). *Översvämningar i Sverige 1901–2010*. (Myndigheten för samhällsskydd och beredskap, Ed.). Karlstad.

- Roy, D. P., & Boschetti, L. (2008). MODIS Collection 5 Burned Area Product MCD45. User Guide, Version 1. (September), 1–12.
- Roy, D. P., Jin, Y., Lewis, P. E., & Justice, C. O. (2005). Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. *Remote Sensing of Environment*, 97(2), 137–162. http://doi.org/10.1016/j.rse.2005.04.007
- Roy, D. P., Lewis, P. E., & Justice, C. O. (2002). Burned area mapping using multi-temporal moderate spatial resolution data-a bi-directional reflectance model-based expectation approach. *Remote Sensing of Environment*, 83(1–2), 263–286. http://doi.org/10.1016/S0034-4257(02)00077-9