
Supplementary Material

1 Deviation Analysis: Technical Details

Before a new control strategy is tested in a clinical trial, it has become common practice to evaluate and
adjust this new therapy scheme in simulation studies. Detailed physiological models of the glucose dynamics
of diabetic patients like the UVA/Padova [1] or the Cambridge simulator [2] have become indispensable tools
for this purpose and numerous publications over the last couple of years show evaluations of new control
strategies using those models (e.g. [3, 4, 5]).

Even though these detailed physiological models have proven to be very valuable for the testing of new insulin
dosing schemes, there are some drawbacks of using them for the performance evaluation. Most models show
a time-invariant behavior1 and are (usually) restricted to insulin and meal carbohydrates as only system
inputs. This is of course a simplification of reality, where there are lots of other influencing factors that also
affect the glucose level of diabetic patients (stress, sports, daytime, mixed-meal composition, etc.). Testing
a new control strategy using a standard physiological model can thus lead to a significant overestimation of
performance.

What is often done by users is to enhance the time-invariant models by incorporating some additional
variability and/or stochastic effects in order to make the control task more challenging (see e.g. [7] or [8]).
However, it is difficult to estimate the magnitude and mode of action of those additional effects from standard
data, which is why those model enhancements are to some extend arbitrary and just try to imitate phenomena
observed in real patient data.

Recently, several new methodologies for the testing of insulin dosing strategies have been proposed that try to
combine real measurement data, i.e. continuous glucose monitoring (CGM) data and insulin injections (dose
and timing) with simple (often linear) models in order to create a test environment that also incorporates
the complex phenomena of real-life glucose dynamics in diabetic patients. The methodologies differ slightly,
however, the basic idea is always the same: A simple model of insulin action is used together with the
assumption that the effect of insulin on the glucose level can be separated from all other effects. In order
to test a new control strategy the effect of the recorded insulin injections is then subtracted from the CGM
data using the assumed model of insulin action and the effect of a different insulin amount (determined by
the newly proposed control algorithm) is calculated using the same model of insulin action and added to the
glucose data.

In this paper these methodologies are referred with the term ”Deviation Analysis”. As already discussed,
the basic idea behind all Deviation Analysis strategies that have so far been proposed is the same. The
corresponding workflow can be seen in Fig. 1: A simple model of insulin action G2(s) (in Fig. 1 assumed
to be linear) is used to subtract the effect of the original insulin dosing (Ins) from the recorded glucose
data (CGM) and to determine the new glucose traces (CGMmod) for an alternative dosing scheme (Insmod).
Assuming a linear model G2 he new glucose trace can thus be calculated in the Laplace domain as:

CGMmod(s) = CGM(s)−G2(s) · Ins +G2(s) · Insmod (1)

The oldest paper we are aware of in which such a strategy has been proposed is [9]. In the newer publications
[10] and [11] similar approaches have been presented. Recently, there have also been first publications in
which evaluation results for insulin dosing strategies using Deviation Analysis are presented - most notably
[12], which gained a lot of attention in the technical diabetes community, [13] (these two papers most probably
use a modified version of the method presented in [11], unfortunately the papers do not give details about
the Deviation Analysis strategy), as well as [14] and [15] (which use the model from [16] to describe insulin
action).

1This is not true anymore for the Cambridge simulator [2] and the newest version of the UVA/Padova simulator [6], which
include some level of intraday variability in selected model parameters.
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Figure 1: Deviation Analysis - Workflow for obtaining simulation results.

However, even though these Deviation Analysis strategies are rather similar, there are some significant
differences, especially regarding the model used for describing insulin action (model structure and parameter
values). For the current work the method described in [10] has been chosen.

In [10] the model for insulin action corresponds to a population mean pharmacodynamic profile for rapid-
acting insulin scaled by a patient-specific insulin sensitivity factor (ISF). It was found that the pharmacody-
namic profile in [10] can be approximated very well with a simple transfer function of third order. Scaling it
in order to get a minimum in the impulse response of magnitude ISF, it reads as follows:

G2(s) =
−exp(2) · ISFDS · TDS

2 · (1 + TDS · s)3
(2)

TDS was determined from the plot with the assumed pharmacodynamics profile supplied in [10] to be
38.19 min. ISFDS is computed from the total daily dose (TDD) in Insulin Units (IU) using the standard
1800-rule:

ISFDS (in mg/dl/IU) =
1800

TDD
(3)

Applying this method for the performance assessment of insulin dosing methods in T2D relies upon a couple
of assumptions and simplifications:

• The effect of insulin can be separated from all other influencing factors.

• The effect of insulin on BG is assumed to be linear. As a consequence insulin works the same indepen-
dently of the BG concentration and independently of the injected quantity.

• Insulin pharamcodynamics are comparable between type 2 diabetes (T2D) and type 1 diabetes (T1D)
patients.

The first two assumption are inherent to almost all Deviation Analysis methods (exceptions are the nonlinear
approaches proposed in [17, 18], for which the second assumption is not made). The third one is specific
to [10] and is due to the fact that the insulin action profile is derived based on T1D data. Basically all
three assumptions are not 100% correct from a physiological point of view, but in case of small differences
compared to the recorded data the resulting error is expected to be small. The bigger the difference to the
recorded data on the other hand, the bigger also the error made in the Deviation Analyses (see e.g. the
comparison between the UVA/Padova simulator and the used Deviation Analysis approach in [10]).
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2 Treatment Options: Technical Details

2.1 Pen & SMBG and Pen & CGM

For the two analyzed treatment options “Pen & SMBG” and “Pen & CGM” the basal insulin was left
unchanged compared to the recorded data in the Deviation Analyses and only the bolus amount has been
modified. Both considered options rely upon Advanced Carbohydrate Counting for computing the required
amount of bolus insulin at each meal, which is computed according to the following formula:

BI =
CHO

CIR
+

BGpre−BGtarget

ISF
− IOB (4)

In (4) BI corresponds to the bolus insulin needs, CHO is the carbohydrate content of the meal, BGpre is the
pre-prandial BG, BGtarget describes the target value for the post-prandial BG and IOB stands for insulin-
on-board, i.e. the bolus insulin from previous injections that is still active in the body. The first term in
(4) is used for counteracting the effect of the meal intake on the BG, whereas the second term is used for
BG corrections. Crucial parameters for calculating the bolus needs are the proportionality factors CIR, the
carbohydrate-to-insulin ratio, and ISF, the insulin sensitivity factor. CIR represents the amount of a meal’s
carbohydrates (in grams) whose effect is counteracted per injected insulin unit (IU) of bolus insulin, whereas
ISF describes by how many mg/dl the BG level will decrease per injected IU. For these two considered
treatment options patient and mealtime specific estimates for CIR and ISF have been computed using the
Adaptive Bolus Calculator (ABC) approach described in the next subchapter, but have been manually re-
tuned based on the Deviation Analysis results where deemed necessary. Furthermore, the identified average
patient-specific T2 values for the ABC approach are used together with the assumed model of insulin action
from the ABC approach in order to compute IOB for both options.

In the Deviation Analyses the target BG value was set to 110 mg/dl. Meal boluses were computed according
to (4) and were injected at the time of the meal as in the recorded data. Additionally, correction boluses have
been considered. For the option “Pen & SMBG” a correction bolus was only injected (calculated according
to (4) with CHO = 0) at the points in time where there was really a correction bolus in the recorded
data, whereas as for option “Pen & CGM” it was assumed that patients inject additional correction boluses
based on the hyperglycemia alarm of the CGM. It was therefore assumed for this option that patients inject
correction bolus when the glucose concentration indicated by the CGM is above 200 mg/dl and there was no
previous bolus injection within the last 60 minutes.

For the option “Pen & CGM” it is furthermore assumed that the patients use the hypoglycemia alarm of
the CGM device in order to ingest rescue carbohydrates if necessary. In case the glucose concentration drops
below 80 mg/dl and there was no previous carbohydrate ingestion within the last 60 minutes, an ingestion
of 5 g of rescue carbohydrates was simulated in the Deviation Analyses. In the option “Pen & SMBG” on
the other hand no rescue carbohydrates were considered in the Deviation Analyses.

2.2 The ABC Approach for Estimating CIR and ISF

Recently [19, 20], the ABC method has been proposed to compute estimates of CIR and ISF using methods
from continuous time system identification. This method has been derived for T1D patients, but is applied
in the current work in order to obtain estimates for CIR and ISF for T2D patients that are then applied
when computing the required bolus insulin amount according to (4).

For describing the BG dynamics in response to meal intakes and insulin injections, the control oriented model
from [21] is used:

BG(s) =
K1

(1 + s·T1)2·s
·D(s) +

K2

(1 + s·T2)2·s
·U(s) (5)
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In this formula, BG(s) describes the BG level, D(s) the meal intakes and U(s) the bolus insulin injections,
all in the Laplace domain. The meal intakes and insulin injections are represented by impulses in the time
domain.

The physiological interpretation of this formula is very similar to the interpretation of the bolus calculator
formula (4): A carbohydrate intake of 1 g increases the BG by factor K1, whereas the injection of 1 IU
of bolus insulin decreases the BG by factor K2. Therefore, K2 has the same meaning as ISF and K2/K1

corresponds to CIR.

In order to account for diurnal variations in K1 and K2 (and therefore also in CIR and ISF) these factors
were assumed to be described by second order polynomials as a function of daytime:

K1,i = K11 +K12·ti +K13·t2i
K2,j = K21 +K22·tj +K23·t2j

(6)

It should be noted that a specific K1 and K2 is calculated for each (impulse-shaped) meal input i and insulin
input j separately based on (6) and the corresponding times of the inputs (ti and tj). The values are then
kept constant for calculating the system response following a specific input.

Additional constraints are introduced in order to limit the intra-patient variability of the profiles of K1 and
K2 to a reasonable value. Additionally, the values of K2 were imposed not to vary too much from some
predefined reference ISF values. In the ABC approach the rule of thumb for calculating ISF according to [22]
is used for this purpose:

ISFKing(mg/dl/IU) = 12 + 1076/TDD(IU) (7)

It is of course possible to use some other reference ISF instead or to impose such a condition on K1 (using
a formula that specifies by which value the BG should rise after carbohydrate intakes, e.g. as a function of
body weight, see [23]).

The additional constraints result in the optimization problem (8). In this problem BGmeas is the vector of
measured BG values, whereas BGmodel corresponds to a vector of calculated BGs (model outputs at the
times of the measurements). The entries in BGmodel depend on the values of the model parameters K1k,l,
K2k,l, T1,l and T2,l with indexes k (index to describe the three parameters in the quadratic equations for K1

and K2) and l (index describing each day for the ABC approach, N days in total).

The minimum and maximum allowed values for K1, K2, K2/K1, T1, T2 and T2/T1 in the optimization can be
found in Tab. 1. These were chosen in accordance with scientific literature (see e.g. [23]) in order to represent
a physiologically relevant parameter space. The day-to-day variability of T1 and T2 was restricted to 25 %
(∆T = 0.25) and the day-to-day variations of the profiles of K1 and K2 were limited to 30 % (∆K = 0.30)
which were assumed to be reasonable values (see e.g. [24] for the intra-patient variability of insulin absorption
and insulin action). The maximum allowed deviation between K2 and ISFKing (calculated according to (7))
was set to 25 % (∆ISF = 0.25).

In order to obtain patient and mealtime specific CIR and ISF estimates the following workflow has to be
performed:

• CGM data is collected with information about bolus injections and meal intakes over N days (in our
case N = 4).

• The methodology described in this subsection is applied to this dataset and diurnal profiles for K2/K1

and K2 are identified.

• The combined profiles for K2/K1 and K2 of all days are used to compute an average profile for CIR
and ISF as a function of daytime.

• Based on the identified values of T2 a value for the duration of insulin action (DIA) can be estimated
for computing IOB.
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• The CIR, ISF and DIA values can be applied in a standard bolus calculator using equation (4).

(K∗1k,l, K
∗
2k,l, T

∗
1,l, T

∗
2,l) = argmin

K1k,l,K2k,l,T1,l,T2,l

(BGmodel −BGmeas)
> · (BGmodel −BGmeas) (8)

subject to : K1,min < K11,l +K12,l·t+K13,l·t2 < K1,max for t ∈ [tmin, tmax]

K2,min < K21,l +K22,l·t+K23,l·t2 < K2,max for t ∈ [tmin, tmax]

CIRmin <
K21,l +K22,l·t+K23,l·t2

K11,l +K12,l·t+K13,l·t2
< CIRmax for t ∈ [tmin, tmax]

1−∆K <
K11,l +K12,l·t+K13,l·t2

1

N

∑N
m=1(K11,m +K12,m·t+K13,m·t2)

< 1 + ∆K for t ∈ [tmin, tmax]

1−∆K <
K21,l +K22,l·t+K23,l·t2

1

N

∑N
m=1(K21,m +K22,m·t+K23,m·t2)

< 1 + ∆K for t ∈ [tmin, tmax]

1−∆ISF <
K21,l +K22,l·t+K23,l·t2

− ISFKing
< 1 + ∆ISF for t ∈ [tmin, tmax]

T1,min < T1,l < T1,max; T2,min < T2,l < T2,max; T21,min <
T2,l

T1,l
< T21,max

1−∆T <
T1,l

1

N

∑N
m=1 T1,m

< 1 + ∆T ; 1−∆T <
T2,l

1

N

∑N
m=1 T2,m

< 1 + ∆T

with : k = 1, 2, 3 l = 1, 2, ..., N

One key assumption behind the ABC method is that the basal rates of the patients are well adjusted and keep
the glucose level more or less constant in the absence of challenges to the glucose metabolism (like meals). In
[19] and [20] the CIR and ISF values computed with the ABC approach were compared to values optimized
by medical doctors for patients with T1D and a good agreement was found. Furthermore, the performance
of the ABC settings was demonstrated for T1D patients in Deviation Analyses in [25].

2.3 Pump & SMBG – Optimization of Basal Rates

For the treatment option “Pump & SMBG” the bolus insulin injections are left unchanged as compared to
the recorded data and only the basal insulin is modified in the Deviation Analyses. In order to subtract the

Table 1: Max. and min. parameter values for the ABC Method for inequality constraints of (8).

Minimum Maximum

K1 [mg/dl/g CHO] 2 8

K2 [mg/dl/IU] -100 -10

K2/K1 [g CHO/IU] 2 100

T1 [min] 10 60

T2 [min] 25 150

T2/T1 [-] 1 10
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effect of the basal insulin in the Deviation Analyses it is assumed that the injected basal insulin leads to a
roughly constant plasma concentration of the basal insulin analogue and that this analogue is metabolized
at a more or less constant rate during a 24 hour period. After subtracting the effect of the original basal
insulin dosing the use of an insulin pump for continuous subcutaneous insulin infusion (CSII) is simulated.

In this work it was assumed that each patient uses four different basal rates for four different times of the
day: overnight (0:00 till 4:00), morning (4:00 till 10:00), during day (10:00 till 18:00) and evening (18:00
till 24:00). The basal rates within each of those time periods is assumed to be constant. The basal rate
for each time period is optimized using Deviation Analysis results of the 4 days available for analysis. This
optimization is performed using a run-to-run approach in which the basal rate is modified based on the value
a cost function (determined based on the Deviation Analysis results):

BasalRatek+1 = BasalRatek +R1 · (BG−BGtarget) +R2 · (THypo) (9)

In (9) BasalRatek corresponds to the setting for the basal rate in iteration k, whereas BasalRatek+1 is the
computed basal rate for the next iteration. BG corresponds to the average glucose concentration as from the
Deviation Analysis results, BGtarget is the target BG concentration (set to 100 mg/dl for this application)
and THypo is the time of hypoglycemia (defined as time below 80 mg/dl for this purpose). The cost thus
consists of two terms, one for the difference between the average glucose from the Deviation Analyses and a
target value and one for time in hypoglycemia, with weighting coefficients R1 and R2.

The optimization of the basal rates is thus performed using the following workflow:

1. Start with an initial guess for the basal rates.

2. Perform Deviation Analysis computations with the chosen basal rates.

3. Compute BG and THypo from the Deviation Analysis results.

4. Update the basal rate according to (9).

5. If the difference between BasalRatek and BasalRatek+1 is small enough the run-to-run optimization is
stopped, otherwise go back to point 2.

The run-to-run approach is used in this work to retrospectively optimize the basal rate settings of an insulin
pump based on Deviation Analysis results. Other successful applications of run-to-run control for insulin
dosing can e.g. be found in [26, 27, 28, 29].

2.4 Artificial Pancreas (AP) with Model Predictive Control (MPC) Algorithm

For this option both the basal insulin, as well as the bolus insulin injections are modified in the Deviation
Analyses as compared to the recorded data. The Artificial Pancreas (AP) algorithm used for this work is a
standards model predictive control (MPC) algorithm with reference tracking. The model used inside the MPC
uses rapid acting insulin and meal carbohydrates as an input and the subcutaneous glucose concentration as
measured output and can be described by the following trasnfer function model:

BG(s) =
KMPC

1 ·TMPC
1

(1 + s·TMPC
1 )2

·D(s) +
KMPC

2 ·TMPC
2

(1 + s·TMPC
2 )2

·U(s) (10)

with TMPC
1 fixed to 60 minutes, TMPC

2 fixed to 76.4 minutes, and KMPC
1 and KMPC

2 estimated based on
the following correlations:

KMPC
1 (mg/dl/g CHO) = 1000/BW (11)

KMPC
2 (mg/dl/IU) = −ISFDS · exp(1) (12)
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with BW , the patient’s body weight (in kg) and ISFDS the ISF estimated according to the 1800-rule (3).
The rapid acting insulin corresponds to the control input, whereas the meal carbohydrates are treated as a
measured disturbance. The settings of the MPC were chosen to follow the recommendations as from [30] as
closely as possible. The MPC formulation used here looks as follows:

Jk = min
∆Ik+i|k

nPH−1∑
i=0

Q · (yk+i|k −BGref)
2 +R · (Ik+i|k)2 + S · (∆Ik+i|k)2 (13)

subject to

xk+i+1|k = A
k
xk+i|k +B

k
uk+i|k (14)

yk+i|k = C xk+i|k +D uk+i|k (15)

∀i ∈ {0, . . . , nPH − 1} (16)

In (13) yk+i|k corresponds to the predicted glucose concentration, whereas Ik+i|k is the corresponding insulin
amount and ∆Ik+i|k is the change in insulin as compared to the infusion rate one time step earlier. Q, R and
S are weights for the three terms in the cost function, whereas BGref corresponds to the reference BG value
and was set to 112.5 mg/dl in this work. Equations (14) and (15) correspond to the model (10) transformed
to a state space representation, meaning that the future glucose concentration is predicted using model (10).
In this MPC formulation the prediction horizon nPH was set to 200 minutes, whereas the control horizon
nCH was set to 50 minutes.

3 Data Analysis in the Frequency Domain

Any given signal with a constant sampling time can be analyzed in the frequency domain after calculating
the Fourier transform of the signal. In this transformation the signal is (roughly speaking) approximated by
a sum of sinus signals, each with a different frequency ωi. The transformation consists of determining the
weights that are assigned to each specific sinus function, the so-called Fourier coefficients. A high weight
means that a certain frequency is common to be observed in the signals, whereas frequencies that appear less
in the signal obtain a lower weight.

Given a vector of equidistant blood glucose (BG) measurements from a continuous glucose monitoring (CGM)
device with N elements

~cgm = [cgm0, cgm1, . . . , cgmN−1] (17)

and sampling time Ts, the Fourier coefficients can be calculated according to

CGMk =

N−1∑
n=0

cgmne
− 2πj

N nk k = 0, . . . , 2n− 1. (18)

The result is a sequence of Fourier coefficients CGMk and one can also write

~cgm c s ~CGM. (19)

The domain of ~CGM is [0, N − 1], but we consider only the right half of the transformed sequence, which
correspond to the entries k = 0 . . . N/2. In a frequency spectrum the resulting Fourier coefficients are plotted
for a frequency range from 0 to π radians per sampling time Ts. Using Fs = 1/TS , the x-axis can be scaled
as

0,
k

N
Fs, . . . ,

1

2
Fs (20)

in Hertz, or

∞, N
k
Ts, . . . , 2Ts (21)

in seconds.
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