Supplemental material: An omnibus test for the global null hypothesis

Andreas Futschik ${ }^{1}$, Thomas Taus ${ }^{2}$, and Sonja Zehetmayer ${ }^{3}$
${ }^{1}$ Department of Applied Statistics, Johannes Kepler University
Linz, Austria
${ }^{2}$ Institute of Population Genetics, University of Veterinary Medicine Vienna, Austria
${ }^{3}$ Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria

January 31, 2018

1 Influence of the chosen transformation on the omnibus method

We present additional power curves for the omnibus test for $m_{1} \in\{1,3,5,10\}$ and $\Delta / \sigma=0.3 / \sqrt{m}_{1}$ for $m=5$ (Fig. 1) as well as $m=20$ (Fig. 2) for the following transformations:

- $h(p)=1-p \quad$ (omnibus p)
- $h(p)=-\log p \quad$ (omnibus $\log p$)
- $h(p)=z_{1-p} \quad($ omnibus $z)$
- $h(p)=p^{-\alpha}$ with $\alpha=0.5 \quad$ (omnibus power)

Figure 1: Power values for omnibus $\log \mathrm{p}$, power, z , and p are given for increasing $n, m=5, m_{1} \in\{1,3,5\}, \Delta / \sigma=0.3 / \sqrt{m}_{1}$.

Figure 2: Power values for omnibus $\log \mathrm{p}$, power, z , and p are given for increasing $n, m=20, m_{1} \in\{1,3,5,10\}, \Delta / \sigma=0.3 / \sqrt{m}_{1}$.

2 Power comparison between different testing methods

Figures 3 and 4 show power curves for omnibus $\log \mathrm{p}$, Bonferroni test, Simes test, Fisher combination test, Stouffer's z test, and higher critisism (HC) for $m_{1} \in$ $\{1,3,5,10\}$, and $\Delta / \sigma=0.3 / \sqrt{m}_{1}$ for $m=5$ (Fig. 3) as well as $m=20$ (Fig. 4).

Figure 3: Power values for increasing $n, m=10, m_{1} \in\{1,3,5\}, \Delta / \sigma=0.3 / \sqrt{m}_{1}$ for omnibus $\log \mathrm{p}$, Bonferroni test, Simes test, Fisher combination test, and Stouffer's z test, and HC.

Figure 4: Power values for increasing $n, m=10, m_{1} \in\{1,3,5,10\}, \Delta / \sigma=$ $0.3 / \sqrt{m}_{1}$ for omnibus $\log \mathrm{p}$, Bonferroni test, Simes test, Fisher combination test, and Stouffer's z test, and HC.

3 Type I error

Fig. 5 shows the type I error for the omnibus test for the four transformations (as supplement to Fig. 1 from the manuscript). Note that the upper limit of the y-axis is now 0.1 . A horizontal line was drawn at 0.05 .

Figure 5: Type I error for omnibus $\log \mathrm{p}$, power, z , and p are given for increasing $n, m=10, m_{1}=0, \alpha=0.05$.

4 Two-sided tests

We additionally performed two-sided tests with approx. half of the alternatives with positive and the other half with negative effect sizes. Fig. 6 shows the twosided equivalent to Fig. 1 from the manuscript. The power values for the two-sided case are lower than for the one-sided case due to the similar type I error rate of 0.05 . However, the comparison of the transformations leads to analogous results. Again there are only small differences in power between the transformations, and the $\log \mathrm{p}$ transform seems to lead to a particularly good trade off in power across many scenarios.

Figure 6: Power values for omnibus $\log \mathrm{p}$, power, z , and p are given for increasing $n, m=10, m_{1} \in\{1,3,5,10\}, \Delta / \sigma=0.3 / \sqrt{m}_{1}, \alpha=0.05$ for the two-sided test.

5 Experimental Evolution

We provide a graphical summary of the approximately $2.6 \times 10^{6} \mathrm{p}$-values obtained by applying our omnibus test to five independent measurements of allele frequency change for each SNP considered in the experiment.

The Manhattan plots in Figure 7 provide p-values of separate tests for each of five replicate Drosophila populations. The corresponding overall p-values obtained using our omnibus test are displayed in Figure 8. For better visibility, we only plot each 50th SNP.

Figure 7: Manhattan plots of negative logarithm of p -values from a genome wide scan of five replicate populations. The red dashed line indicates the significance threshold when using the Bonferroni procedure to control the FWE at $\alpha=0.01$. Data are taken from Griffin et al., (2017).

Figure 8: Plot of combined evidence across replicates. Manhattan plots of the negative logarithm of the p-values obtained with our omnibus $\log p$ test. The red dashed line indicates the significance threshold when using the Bonferroni procedure to control the FWE at $\alpha=0.01$. Data are taken from Griffin et al., (2017).

