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Data
The data for this reanalysis, provided to us by Rambousek et al. (2014), are the following: The latencies (times in seconds)
that each of 24 rats needed to reach the platform in the Morris water maze on 24 trials. Trials 1–16 were administered on
Day 1; Trials 17–24 on Day 2. The 24 rats were randomly divided in 3 experimental conditions (8 rats in each condition),
which differed with respect to the amount of psilocin administered after the last trial on Day 1: 0 mg/kg (control), 1 mg/kg,
and 4 mg/kg. Hence, in total, we have 24× 24 = 576 observations.

Let yij denote the observed latency for rat i (with i = 1, . . . , 24) on trial j (j = 1, . . . , 24). Importantly, 33% of the yij
are censored as the trials were interrupted whenever the rat did not reach the platform within 60 seconds. We define cij = 1
when the observation was censored, and cij = 0 otherwise.

Model
We specify a hierarchical linear model, where the Yij (the uncensored random variables associated with the observations yij)
are assumed to follow a normal distribution:

Yij ∼ N(θij , τ
2), (1)

with τ2 a free to-be-estimated variance parameter and θij being the expected value for the time required by rat i on trial j,
which is modeled as:

θij = [α1i + β1i(j − 8.5)] I(j ∈ Day1) + [α2i + β2i(j − 20.5)] I(j ∈ Day2). (2)

The indicator function I(condition) in the latter equation returns 1 if condition is true and 0 otherwise; Day1 and Day2 denote
the set of trials on the first day and second day, respectively (i.e., Day1 = {1, . . . , 16} and Day2 = {17, . . . , 24}).

Equation (2) specifies, for each individual rat i and separately for Day 1 and Day 2, a simple linear regression model for
its latencies in function of the trial number, with intercepts α1i and α2i, for Day 1 and Day 2, respectively, and slopes β1i
and β2i. Let ϑi denote the vector of regression parameters associated with rat i, that is, ϑi = (α1i, β1i, α2i, β2i)

′. Then,
the ϑi are considered random effects, which are assumed to be independently drawn from a multivariate normal (MVN)
distribution:

ϑi ∼ MVN(µi,Σ), (3)

where the vector µi is given by

µi =


α̃1

β̃1
α̃20 I(Dosei = 0) + α̃21 I(Dosei = 1) + α̃24 I(Dosei = 4)

β̃20 I(Dosei = 0) + β̃21 I(Dosei = 1) + β̃24 I(Dosei = 4)

 (4)

and Σ is a free to-be-estimated 4× 4 covariance matrix.
The parameters α̃1 and β̃1 can be interpreted as, respectively, the mean intercept and slope across all rats on the first day.

(As all rats received the same treatment on Day 1, we do not assume the intercept and slope to differ in function of the
experimental condition.) On the other hand, α̃2k and β̃2k (for k = 0, 1, 4) are the mean intercept and slope on the second
day across the rats that were injected k mg/kg of psilocin. Note further that the model specification in Equation (2) implies
that the intercept parameters (α̃1 and α̃2k) can be interpreted as the mean latency across trials within the given day, while the
slope parameters (β̃1 and β̃2k) model a possible learning effect across trials within days.
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Sampling distribution of the observed data Equation (1) specifies that the latencies depend on the θij and τ2. By assuming
independence, it follows that the sampling distribution of the observed data is given by:

p(y |θ, τ2) =

24∏
i=1

24∏
j=1

[(
φ(yij ; θij , τ

2)
)1−cij (

1− Φ(60; θij , τ
2)
)cij]

, (5)

where y denotes the vector of observed data and θ the corresponding vector of parameters θij . The φ(·; θij , τ2) and
Φ(·; θij , τ2) denote the univariate normal probability density function and the normal cumulative distribution function,
respectively, with mean θij and variance τ2. Note that, by Eq. (5), censoring is taken into account by the model.

By Eq. (2), each θij is fully determined by the regression parameters in the ϑi (and the trial number). Hence, using ϑ to
denote the vector of the individual ϑi, we can interchangeably use p(y |θ, τ2) and p(y |ϑ, τ2).

Estimation
The free parameters of the above described model are α̃1, β̃1, α̃20, β̃20, α̃21, β̃21, α̃24, β̃24, τ2, and Σ. To obtain estimates
for these parameters, we considered the model in a Bayesian framework and looked at the posterior distribution of the
parameters. By Bayes theorem, the posterior distribution is proportional to the product of the likelihood function and the
prior distribution. That is,

p(α̃1, β̃1, α̃20, β̃20, α̃21, β̃21, α̃24, β̃24, τ
2,Σ |y) ∝ p(y | α̃1, β̃1, α̃20, β̃20, α̃21, β̃21, α̃24, β̃24, τ

2,Σ)

× p(α̃1, β̃1, α̃20, β̃20, α̃21, β̃21, α̃24, β̃24, τ
2,Σ),

where the symbol ∝ is read as “is proportional to”.
The likelihood function can be decomposed as follows:

p(y | α̃1, β̃1, α̃20, β̃20, α̃21, β̃21, α̃24, β̃24, τ
2,Σ) ∝ p(y |ϑ, τ2)

× p(ϑ | α̃1, β̃1, α̃20, β̃20, α̃21, β̃21, α̃24, β̃24,Σ),

where p(y |ϑ, τ2) is given by Eq. (5). Assuming independence, it follows further from Eq. (3) that

p(ϑ | α̃1, β̃1, α̃20, β̃20, α̃21, β̃21, α̃24, β̃24,Σ) =

24∏
i=1

φ(ϑi;µi,Σ).

In the latter equation φ(·;µi,Σ) denotes the multivariate normal density function with means µi and covariance matrix Σ.
Note that, by Eq. (4), the µi are fixed given the parameters α̃1, β̃1, α̃20, β̃20, α̃21, β̃21, α̃24, and β̃24 (and knowledge about
the experimental condition that rat i belongs to).

With respect to the prior distribution, we assume that the parameters α̃1, β̃1, α̃20, β̃20, α̃21, β̃21, α̃24, and β̃24 are identically
and independently distributed (iid) as follows:

α̃1, β̃1, α̃20, β̃20, α̃21, β̃21, α̃24, β̃24
iid∼ N(0, 10002).

By specifying a large variance, the prior distribution essentially does not provide information about these parameters.
For the variance parameters τ2 and Σ, we assume independent vague priors as follows:

τ2 ∼ Gamma(0.001, 0.001),

with the numbers between parentheses being the shape and inverse-scale parameters of the gamma distribution;

Σ ∼ Inverse-Wishart(4, I),

that is, an Inverse-Wishart distribution with 4 degrees of freedom and the 4× 4 identity matrix as the scale matrix.
We obtained 5,000 draws from the specified posterior distribution by running a Markov chain Monte Carlo procedure

with 5,000,000 iterations (apart from 5,000 burn-in draws) of which each 1,000th iteration was saved. We implemented the
model and conducted the analysis using the procedure PROC MCMC of SAS Software Version 9.4 (SAS Institute, 2015).
Examination of the value-by-iteration plots showed that the chain for each of the parameters had rapidly reached its stationary
distribution.

Results: Posterior summary
Table 1 shows for each of the free parameters the posterior mean, standard deviation, and the associated 95%-high posterior
density interval, based on the 5,000 draws from the simulated posterior distribution.
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Table 1. Posterior summaries for each of the parameters, based on 5,000 draws obtained from a Markov chain Monte Carlo
simulation procedure.

Parameter Mean Standard deviation 95%-high posterior density interval

α̃1 45.95 3.43 [ 39.04; 52.52]

β̃1 −1.76 0.43 [ −2.59; −0.90]

α̃20 43.82 4.26 [ 35.18; 51.95]

α̃21 38.57 3.99 [ 30.67; 46.33]

α̃24 27.14 4.00 [ 19.14; 38.88]

β̃20 −5.08 1.57 [ −8.11; −2.00]

β̃21 −5.22 1.47 [ −7.97; −2.18]

β̃24 −2.52 1.45 [ −5.46; 0.20]

τ2 23.32 0.97 [ 21.47; 25.22]

Σ11 238.6 92.01 [ 98.84; 423.7 ]

Σ12 6.05 8.29 [ −9.44; 22.92]

Σ13 161.5 65.96 [ 57.32; 291.3 ]

Σ14 −18.72 17.57 [−56.21; 11.07]

Σ22 2.40 1.49 [ 0.20; 5.25]

Σ23 6.19 6.30 [ −5.37; 19.58]

Σ24 −1.48 1.67 [ −4.83; 1.46]

Σ33 121.3 64.15 [ 22.25; 247.6 ]

Σ34 −15.02 13.75 [−44.08; 7.71]

Σ44 4.00 3.80 [ 0.10; 11.48]
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