SAGE Journals
Browse

Understanding Dyslexia Through Personalized Large-Scale Computational Models

Posted on 2019-02-07 - 12:00

Learning to read is foundational for literacy development, yet many children in primary school fail to become efficient readers despite normal intelligence and schooling. This condition, referred to as developmental dyslexia, has been hypothesized to occur because of deficits in vision, attention, auditory and temporal processes, and phonology and language. Here, we used a developmentally plausible computational model of reading acquisition to investigate how the core deficits of dyslexia determined individual learning outcomes for 622 children (388 with dyslexia). We found that individual learning trajectories could be simulated on the basis of three component skills related to orthography, phonology, and vocabulary. In contrast, single-deficit models captured the means but not the distribution of reading scores, and a model with noise added to all representations could not even capture the means. These results show that heterogeneity and individual differences in dyslexia profiles can be simulated only with a personalized computational model that allows for multiple deficits.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?