SAGE Journals
Browse

Significance and evolution characteristics of the isobutane/n-butane ratio of natural gas

Posted on 2019-10-17 - 12:09

In previous studies, two conflicting conclusions existed, which were: (a) the isobutane/n-butane ratio of natural gas increases with the increasing maturity (Ro) of source rocks and (b) decreases with the increasing Ro. In this paper, the correlations between the isobutane/n-butane ratios, dryness of natural gases, and the Ro values of source rocks of 77 gas samples from Cretaceous and Tertiary in Kuqa Depression, Tarim Basin, Triassic Xujiahe Formation in central Sichuan Basin, Carboniferous–Permian in Sulige and Yulin gas field, Ordos Basin, China, and 80 shale gas samples from Mississippian Barnett Shale in the Fort Worth Basin, the United States are analyzed to reveal the evolution of the isobutane/n-butane ratios, then mathematical models of the isobutane/n-butane ratios and Ro are attempted to be established. Results show that the isobutane/n-butane ratio initially increases and then decreases with increasing Ro, both coal-derived gas and oil-type gas. Diverse types of kerogens may be responsible for the different corresponding Ro values when the isobutane/n-butane ratios of gases reach their maximum values. The initial increase in the isobutane/n-butane ratios with increasing Ro is the reason that isobutane is mainly generated at a higher rate by carbonium ion reaction of α-olefins with protons during kerogen primary cracking at lower maturity, whereas free radical reactions to form n-butane relatively quickly during oil cracking at higher maturity and isobutane cracked at a higher rate during the wet gas cracking stage may result in the terminal decreases in the isobutane/n-butane ratios. Besides, mathematical models of the isobutane/n-butane ratios of different types of natural gas and maturity are established. Therefore, the maturity of gas source rock can be obtained quickly based on the models using the isobutane/n-butane ratio combined with other component information (such as dryness, wetness, etc.), which is of great significance to the characterization of natural gas maturity and gas source rock correlation.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?