SAGE Journals
Browse

Optimizing the Analytical Performance of Substrate-Integrated Hollow Waveguides: Experiment and Simulation

Posted on 2019-08-23 - 12:10

The goal of this technical note was to compare experimentally and via simulation of eight substrate-integrated hollow waveguide (iHWG) designs, and to predict promising future iHWG structures in lieu of experiments. The iHWGs differed in their geometry (i.e., inlet funnel cross-section and inner channel cross-section), as well as in their material properties (i.e., type of metal, polish of inner channel). Experimentally, calibration functions of isobutane as a model analyte were determined, and the analytical figures of merit, i.e., signal-to-noise ratio, limit of detection, were evaluated for each iHWG. Evaluation of the amount of radiation incident at the real-world and simulated detector revealed that experiment and simulation were in excellent agreement. While material and quality of the inner channel wall did not have a significant influence on the performance, the iHWG geometry profoundly affected the performance in terms of light throughput: Increasing the inlet funnel dimensions and the inner channel cross-section benefits light throughout, and thus, the analytical signal. Based on these results, simulations of not yet fabricated iHWGs were performed and promising new iHWG structures were suggested.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?