SAGE Journals
Browse

Numerical investigation on the nonlinear dynamics of a breathing cracked rotor supported by flexible bearings

Posted on 2019-08-01 - 12:18

The steady-state response and breathing mechanism of a cracked rotor supported by flexible bearings are investigated in this paper. The generalized and efficient method proposed in this paper can be used to study the dynamics of complicated cracked structures without much modification. First, a three-dimensional finite element model of the cracked rotor-bearing system is established in the rotating frame and a general contact model for modeling the breathing crack is proposed. A component mode synthesis is used to form a reduced-order model. Then, a procedure combining multi-harmonic balance method with arc-length method is used to search the response solution. To accelerate the calculation, the analytical formulations for calculating the tangent stiffness matrix are used. Finally, the gravity induced response and breathing mechanism of a cracked rotor-bearing system are obtained. Interesting result is that the rotational speed and the crack depth will influence the breathing mechanism even if the load remains unchanged.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?