SAGE Journals
Browse

New Metabolite With Inhibitory Activity Against α-Glucosidase and α-Amylase From Endophytic Chaetomium globosum

Posted on 2020-08-01 - 12:09

An efficient bioactive tracking separation strategy based on liquid-liquid extraction and high-speed counter-current chromatography (HSCCC) was developed and used to isolate bioactive natural products from the endophytic fungus Chaetomium globosum residing in Ginkgo biloba. Using HSCCC, the novel metabolite chaetoglobol acid (1) as well as 11 known compounds (2-12), including 6 chlorinated azaphilones and 3 cytochalasans, were successfully isolated. The structure of compound 1 was elucidated through spectroscopic analyses and HRESIMS data. Compound 1 possesses a rare C11-polyketide skeleton. All isolates were evaluated for their α-glucosidase and α-amylase inhibitory activities in vitro. Compound 1 showed high inhibition against α-glucosidase (IC50 = 3.04 μM), 18-fold higher than that of acarbose (IC50 = 54.74 μM), and also displayed moderate inhibitory activity against α-amylase (IC50 = 22.18 μM). As the results indicated that 1 has inhibitory effects against both α-glucosidase and α-amylase, 1 may be a promising candidate for mediating type 2 diabetes.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?