SAGE Journals
Browse

Monitoring the Caustic Dissolution of Aluminum Alloy in a Radiochemical Hot Cell Using Raman Spectroscopy

Posted on 2020-07-10 - 12:09

Chemical processing of highly radioactive materials commonly takes place in heavily shielded hot cells. The remote, real-time monitoring of chemical processing streams via optical spectroscopic techniques in hot cells may be particularly useful. Here, we describe the implementation of Raman spectroscopy and chemometric analysis to monitor the dissolution of aluminum-clad targets containing irradiated aluminum–neptunium oxide cermet pellets in caustic solutions in a hot cell environment. Partial least squares regression analysis was used to generate calibration models to quantify the concentration of dissolved aluminum, nitrate, and hydroxide in solutions within the radiochemical hot cell. This work explored a systematic approach to optimize a matrix of calibration standards using a D-optimal experimental design. The Design of Experiments-based regression model, in comparison to more traditional analytical approaches, was found to be the more practical method for building calibration models, with fewer samples, to obtain informative analytical data from Raman spectra.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?