SAGE Journals
Browse

Magnetorheological elastomer peristaltic fluid conveying system for non-Newtonian fluids with an analogic moisture loss process

Posted on 2019-06-04 - 12:00

A magnetorheological elastomer peristaltic fluid conveying system consisting of a magnetorheological elastomer tube and two electromagnets implements controlled movements via an external magnetic field with varying periods of driving voltages to convey non-Newtonian fluids over a certain time period. The effects of backpressure at the outlet of the magnetorheological elastomer peristaltic fluid conveying system, the viscosity of fluids at zero shear rate, and moisture loss along the longitudinal direction on net pumped volume are investigated systematically. The results demonstrate that the net pumped volume declines linearly with backpressure under all driving voltage periods. An improvement of the viscosity of fluids at zero shear rate allows at first the decrease, then the increase, and finally the decrease of the net pumped volume. Moisture loss plays a second role in the net pumped volume and the change of the fluid viscosity profile. The compression of the magnetorheological elastomer tube, the maximum shear stress, and the maximum von Mises stress in the magnetorheological elastomer peristaltic fluid conveying system are investigated to evaluate the magneto-fluid-structure interaction. This research offers a new approach to biological fluid conveying with an analogic moisture loss process.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?