SAGE Journals
Browse

Exploratory Graph Analysis for Factor Retention: Simulation Results for Continuous and Binary Data

Posted on 2021-12-29 - 13:08

Exploratory graph analysis (EGA) is a commonly applied technique intended to help social scientists discover latent variables. Yet, the results can be influenced by the methodological decisions the researcher makes along the way. In this article, we focus on the choice regarding the number of factors to retain: We compare the performance of the recently developed EGA with various traditional factor retention criteria. We use both continuous and binary data, as evidence regarding the accuracy of such criteria in the latter case is scarce. Simulation results, based on scenarios resulting from varying sample size, communalities from major factors, interfactor correlations, skewness, and correlation measure, show that EGA outperforms the traditional factor retention criteria considered in most cases in terms of bias and accuracy. In addition, we show that factor retention decisions for binary data are preferably made using Pearson, instead of tetrachoric, correlations, which is contradictory to popular belief.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?