SAGE Journals
Browse

Effects of rotary ultrasonic bone drilling on cutting force and temperature in the human bones

Posted on 2020-06-04 - 12:09

Efficacy and outcomes of osteosynthesis depend on various factors including types of injury and repair, host factors, characteristics of implant materials and type of implantation. One of the most important host factors appears to be the extent of bone damage due to the mechanical force and thermal injury which are produced at cutting site during bone drilling. The temperature above the critical temperature (47 °C) produces thermal osteonecrosis in the bones. In the present work, experimental investigations were performed to determine the effect of drilling parameters (rotational speed, feed rate and drill diameter) and techniques (conventional surgical bone drilling and rotary ultrasonic bone drilling) on cutting force and temperature generated during bone drilling. The drilling experiments were performed by a newly developed bone drilling machine on different types of human bones (femur, tibia and fibula) having different biological structure and mechanical behaviour. The bone samples were procured from male cadavers with the age of second to fourth decades. The results revealed that there was a significant difference (p < 0.05) in cutting force and temperature rise for rotary ultrasonic bone drilling and conventional surgical bone drilling. The cutting force obtained in rotary ultrasonic bone drilling was 30%–40%, whereas temperature generated was 50%–55% lesser than conventional surgical bone drilling process for drilling in all types of bones. It was also found that the cutting force increased with increasing feed rate, drill diameter and decrease in rotational speed, whereas increasing rotational speed, drill diameter and feed rate resulted in higher heat generation during bone drilling. Both the techniques revealed that the axial cutting force and the temperature rise were significantly higher in femur and tibia compared with the fibula for all combinations of process parameters.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?