Double-segregated multiwalled carbon nanotube/silicone composites with large electrical to thermal conductivity ratios via in-situ silicone emulsion polymerization

Posted on 22.05.2020 - 12:12

Polymer composites with a high electrical conductivity (σ) to thermal conductivity (k) ratio have been intensively investigated in recent years. While highly conductive materials, such as metallic fillers or conducting polymers, were used to enhance σ, microstructural engineering was used to decrease k by forming porous structures, such as aerogels or 3D networks. These structures, however, were mechanically vulnerable and could only have limited applications. In this study, multiwalled carbon nanotube /silicone composites with a high σ/k ratio were developed by forming a double-segregated multiwalled carbon nanotube network in the porous body of the composites. The unique microstructure of the composites was created by a novel fabrication process: layer-by-layer deposition with in-situ polymerization of silicone emulsion particles dispersed in a water solvent. This novel process yielded very thick films, >200 µm, with high σ/k values, ∼2 × 104 (S/m)/(W/m·K). These high σ/k composites can be used for various applications, such as resistive heating elements, thermoelectric materials, and wearable thermotherapy.

CITE THIS COLLECTION

Select your citation style and then place your mouse over the citation text to select it.
Kim, Dongouk; Lee, Sang-Eui; Sohn, Yoonchul (2020): Double-segregated multiwalled carbon nanotube/silicone composites with large electrical to thermal conductivity ratios via in-situ silicone emulsion polymerization. SAGE Journals. Collection. https://doi.org/10.25384/SAGE.c.4989326.v1
or

SHARE

email
need help?