SAGE Journals

Bootstrapping and Empirical Bayes Methods Improve Rhythm Detection in Sparsely Sampled Data

Version 3 2018-09-26, 09:00
Version 2 2018-09-18, 15:00
Version 1 2018-08-15, 16:01
Posted on 2018-09-18 - 15:00

There is much interest in using genome-wide expression time series to identify circadian genes. However, the cost and effort of such measurements often limit data collection. Consequently, it is difficult to assess the experimental uncertainty in the measurements and, in turn, to detect periodic patterns with statistical confidence. We show that parametric bootstrapping and empirical Bayes methods for variance shrinkage can improve rhythm detection in genome-wide expression time series. We demonstrate these approaches by building on the empirical JTK_CYCLE method (eJTK) to formulate a method that we term BooteJTK. Our procedure rapidly and accurately detects cycling time series by combining information about measurement uncertainty with information about the rank order of the time series values. We exploit a publicly available genome-wide data set with high time resolution to show that BooteJTK provides more consistent rhythm detection than existing methods at typical sampling frequencies. Then, we apply BooteJTK to genome-wide expression time series from multiple tissues and show that it reveals biologically sensible tissue relationships that eJTK misses. BooteJTK is implemented in Python and is freely available on GitHub at


3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
AAPG Bulletin
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
Select your citation style and then place your mouse over the citation text to select it.


need help?