SAGE Journals
Browse

Artificial increasing returns to scale and the problem of sampling from lognormals

Posted on 2020-07-16 - 12:10

We show how increasing returns to scale in urban scaling can artificially emerge, systematically and predictably, without any sorting or positive externalities. We employ a model where individual productivities are independent and identically distributed lognormal random variables across all cities. We use extreme value theory to demonstrate analytically the paradoxical emergence of increasing returns to scale when the variance of log-productivity is larger than twice the log-size of the population size of the smallest city in a cross-sectional regression. Our contributions are to derive an analytical prediction for the artificial scaling exponent arising from this mechanism and to develop a simple statistical test to try to tell whether a given estimate is real or an artifact. Our analytical results are validated analyzing simulations and real microdata of wages across municipalities in Colombia. We show how an artificial scaling exponent emerges in the Colombian data when the sizes of random samples of workers per municipality are 1% or less of their total size.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?